
Development of a Remote Object Webcam Controller (ROWC) with CORBA and JMF

A Thesis submitted
to the Graduate School

University of Arkansas at Little Rock

in partial fulfillment of requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

in the Department of Computer Science
of the Donaghey College of Information Science and Systems Engineering

July 2002

Frank McCown

BS, Harding University, Searcy, Arkansas, 1996

© Copyright 2002 Frank McCown
All Rights Reserved

 2

Fair Use

This thesis is protected by the Copyright Laws of the United States (Public Law 94-553, revised in 1976).
Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed
with proper acknowledgement. Use of this material for financial gain without the author’s express written
permission is not allowed.

Abstract

 The need for a low-cost, scalable, cross-platform, distributed system for performing visual surveillance
prompted the development of the Remote Object Webcam Controller (ROWC). With a web cam and
personal computer, a user can use ROWC to remotely monitor live video and archive video for later
retrieval. This thesis describes the use of the Java™ Programming Language, Java Media Framework™
(JMF), both developed by Sun Microsystems, and the Object Management Group’s (OMG’s) Common
Object Request Broker Architecture (CORBA) for constructing the ROWC system. A comparison of this
system with other similar distributed systems is made, and several enhancements to the system are offered
for future research. Our experience in building ROWC has uncovered some JMF bugs, but the
combination of CORBA and JMF has been shown sufficient for producing a distributed video surveillance
system that is portable, flexible, and extendable.

Keywords: Java, JMF, CORBA, remote object, distributed system

 3

Table of Contents

Abstract ...2

Table of Contents ..3

List of Figures ...4

Acknowledgements ...5

Dedication ...5

Introduction ...6

Motivation ...6

Overview of Technology...6

CORBA ..7
Video Streaming...8
Java Media Framework ..9

Architecture of System..10

Media Server ..12
Registration Object ..13
MediaStore Object ...14

Cam Processor ..15
Cam Controller ...17
Dynamic View Updating of Media Archive Library..18

ROWC JMF Architecture ..19
Related Work...21

DSS Surveillance System Implementation ...21
ezlinX Surveillance System..22

Future System Enhancements ...22

QoS Provision...22
Multiple Access of Cam Processor...22
Media Server Improvements...22

Conclusion...23

Appendix ...23

References ...36

 4

List of Figures

Figure 1 - CORBA client calling a method on object X..7
Figure 2 - RTP Architecture from [JMF99]. ...8
Figure 3 – ROWC overview..10
Figure 4 - Detailed view of ROWC...11
Figure 5 - Media Server application. ...12
Figure 6 - Registration object. ...13
Figure 7 - MediaStore object...15
Figure 8 - Cam Processor application. ..15
Figure 9 - CamManager object..16
Figure 10 - Cam Controller application...17
Figure 11 – CamVideoCallback, CamControllerCallback, and MediaArchiveCallback objects.18
Figure 12 - Updating GUI when media archive is changed. ...19
Figure 13 - Cam Processor: Video from a web cam is captured and cloned for viewing, streaming, and

storing to file..20
Figure 14 – Cam Controller: Streaming RTP video is sent to a Player for viewing......................................20
Figure 15 – Media Server: A QuickTime file is streamed with RTP over the network.20

 5

Acknowledgements

 I would like to thank Dr. Yeong-Tae Song for providing me the opportunity to learn about distributed
programming during my summer researching position. I’d also like to thank Dr. Charles Wesley Ford, Jr.,
my thesis advisor, for his helpful guidance and feedback during the writing of this thesis. Thank you to the
professors who served on my thesis committee, for the time they have invested in ensuring my thesis is
thorough and defendable.
 Great appreciation goes to my colleagues at Harding University who have supported me during the last
several years while I taught full time and worked on my Masters degree. Special thanks goes to Dr. Tim
Baird, my department chairman, to whom this thesis is dedicated. Without Tim’s personal commitment
and backing I would not have had the opportunity to teach at Harding University. It has been a wonderful
experience to be at Harding as both a student and a faculty member, and I have learned from my fellow
colleagues what it means to be a Christ-led college instructor.
 Thank you to my close friends who have been a source of strength and who always provide a much-
needed escape from the world of academia. Thanks to my family for their continual love and support. And
all praise goes to God through whom all blessings flow. As I am continually reminded, “the fear of the
Lord is the beginning of wisdom.” (Psalms 111:10)

Dedication

This thesis is dedicated to Dr. Tim Baird, my boss and mentor, for his continual encouragement to me
while teaching and completing my masters degree. The opportunity to teach at Harding University has
been a great blessing.

 6

Introduction

 There is a growing need today to visually monitor an area from a remote location using a video camera
or web cam. Distributed multimedia applications of this type require an efficient method of transporting
real-time video from monitors to listening clients. Streaming multimedia frameworks have become
increasingly popular since the Internet is used as a media transportation layer. Advances in CPU
processing power and increased network bandwidth have contributed to this growth [MSS02]. Working
with streaming video presents several challenges, including interfacing with a variety of web cams on
different operating systems [Sun02-4], efficiently streaming captured video [WHZ01], archiving video
streams [PHS96], and timely access to such archives [Gem95].
 This thesis describes the use of the Java™ Programming Language, Java Media Framework™ (JMF),
both developed by Sun Microsystems, and the Object Management Group’s (OMG’s) Common Object
Request Broker Architecture (CORBA) for constructing a low-cost, scalable, cross-platform, distributed
system to perform surveillance. A comparison of this system with other similar distributed systems will
also be made. Several enhancements to the system will be offered for future research.

Motivation

 The proliferation of web cams and the increasing use of streaming media have improved the ability of
users to communicate with each other, to be entertained and to monitor or perform surveillance. Naturally,
the development of software for providing such services has become prevalent in the software development
community. The popular Java Programming Language has continued to establish itself as an ideal
language for building cross-platform, object-oriented software. JMF allows Java programs a vendor-
independent and platform-independent interface to a variety of web cams. It also provides mechanisms for
transporting streaming video using the Real-time Transfer Protocol (RTP) [SCF96].

Motivation for this work is to validate claims made by Sun for using Java and JMF to interface with a web
cam and stream video over a network while interfacing with CORBA as a framework for building
distributed systems that require a high degree of communication between autonomous applications running
on separate personal computers. As a result, a video-based distributed monitoring system called Remote
Object Webcam Controller (ROWC) was developed. ROWC uses a combination of these technologies to
build a low-cost, scalable, cross-platform, distributed system to perform surveillance provided the major
impetus to build the ROWC system.

Overview of Technology

 Building a distributed system requires a great deal of network communication between distributed
processes. Java applications may use sockets, RMI, or CORBA for communicating over a network.
Although socket programming is efficient and has been widely used, it is also considered to be a lower-
level form of network programming that is often tedious and error-prone, especially for large distributed
systems. Sun’s Remote Method Invocation (RMI) is a technology that provides a higher-level view of
network programming. The underlying communication channel is made transparent to the programmer
using RMI so method calls on a remote object are performed as if the object were local. RMI and CORBA
are similar technologies in many respects, but, unlike CORBA, RMI requires an all-Java implementation
[Sun02-2]. The choice to use CORBA over RMI is typically made from the need to interface with existing
legacy systems or to avoid the restriction of being locked into a single programming language. Access to
non-Java programs in RMI is possible using the Java native interface (JNI) [Sun02-5], but the overhead

 7

required for using JNI makes CORBA an easier alternative. Although the ROWC system has been
developed entirely in Java, CORBA was used to allow non-Java clients to be added to the system in the
future and for future research integrating JMF with the CORBA Audio/Visual (A/V) service which is
discussed later in this thesis.
 The following sections provide a summary of the following technologies used to build the ROWC
system: CORBA, video streaming, and JMF.

CORBA

 The Object Management Group (OMG), a consortium of over 700 companies, has developed the
Common Object Request Broker Architecture (CORBA) as a means to build interoperable software
components that interact in a heterogeneous environment [OMG02]. Like RMI, CORBA greatly simplifies
the programmer’s work by providing a layer of abstraction between his application and the network
programming layer. CORBA allows programmers to work within an object-oriented framework where
remote objects are instantiated and their methods are called as if they resided on the same computer.
Remote objects may be implemented in any high level language (HLL) like C++ or Java for which an
Interface Definition Language (IDL) compiler is available. IDL is a declarative language developed by
OMG for defining remote object implementations. By de-coupling the implementation language from its
interface, neither the object nor the instantiator need to be concerned with the programming language that
was used for each one’s implementation.

Client

Call foo() on
object X Object X foo()

Object Request Broker

Server

stub skeleton

Figure 1 - CORBA client calling a method on object X.

 A main component of CORBA is the Object Request Broker (ORB) which is responsible for
marshalling method invocations, parameters, and return values across the network [Sca01]. All client
requests are transparently sent to server object implementations by the ORB. ORB vendors that adhere to
the CORBA standard are able to interact seamlessly. Figure 1 shows how the client invokes the method
foo() on the object X that is housed on the server. The method call is marshaled through the client-side
IDL stub to the server object. The server may return values back to the caller through the ORB. An IDL
compiler generates both the IDL stub and skeleton.
 The CORBA framework provides a number of services that are useful for building distributed
applications. One of the most important services is the Naming Service. It allows objects to register
themselves with the service so they can be made available to clients. The ORB uses the Naming Service to
find remote objects and coordinate the marshaling of method calls and return values.

 8

Video Streaming

 Capturing and streaming live video has become increasingly popular on the Internet and local intranets.
There are three methods for sending video over a network from a media server to a viewing client [Mic02-
2]. In the first method, the complete file is downloaded from the server to the client. The client can then
play the locally cached video file. This method is only acceptable when the video file is relatively small
and the client does not need to see real-time video. With the second method, the video file is downloaded
to the client, but the client is able to start viewing the video once enough of it has been cached; the video
plays while it is downloading. This allows the client to start viewing the video sooner, especially when
viewing large video files. This method is still not acceptable for real-time video since the reception of the
video always lags behind the transmission. The third method sends video from the server to the client in
real-time, and the client may or may not cache the video. This method requires significantly higher
bandwidth for faster transmission than the previous two methods and is the only method acceptable for
viewing live video. If the video is not cached, the server must re-transmit video for clients wanting a
second viewing. This of course causes an increase in network traffic and increases the demands of the
network. However, for viewing video in a pay-per-view scenario, this disadvantage becomes an advantage
since free replay of cached content is not available. Because real-time video transmission requires
immediate delivery, intermittent video frames must sometimes be dropped to cope with limited throughput.
Although it is usually acceptable to lose frames periodically, a large delay in transmission of those frames
is not acceptable. This method requires balancing the competing needs for a high quality picture and a high
frame rate.
 Streaming live video from a web cam requires the use of quick transport protocols like RTP [SCF96].
RTP is a higher layer transport protocol developed by the Internet Engineering Task Force (IETF) for
providing end-to-end delivery of time-based media. It is typically used with the User Datagram Protocol
(UDP) for its lower transport layer instead of the Transmission Control Protocol (TCP) [Mic02-2].
Connection-oriented transmission protocols like HTTP that are based on TCP are generally not acceptable
for media transmission because of the additional overhead required for reliable connections such as
retransmission of lost packets. IP delays in transmission due to packet retransmission can degrade live
video. UDP does not guarantee that packets make it to their destination or arrive in the correct order; this is
acceptable for video which can tolerate occasionally dropped packets [Wil02]. UDP is also connectionless
which allows stream multicasting to multiple listeners. JMF provides hooks for using other transport
protocols besides UDP. On a high-speed intranet where bandwidth is more plentiful, TCP or other native
high-speed ATM protocols may be useful for their speed and Quality-of-Service (QoS) features.
 Because RTP does not provide any mechanisms for ensuring transmission rate or quality, a control
protocol (RTCP) is used with RTP to monitor the quality of data distribution and to monitor and identify
RTP transmissions [Sun99]. Figure 2 shows the relationship of RTP to underlying transport protocols and
media frameworks that use RTP.

Figure 2 - RTP Architecture from [JMF99].

Real-time media frameworks and applications

RTP

Other network and
transport protocols

RTCP

UDP

IP

 9

Java Media Framework

 Java has long been touted for its platform independent benefits. Java Virtual Machines (JVM) are
widely available for the most common operating systems. JMF is an application programming interface
(API) for the development and incorporation of time-based media into Java applications that is easy to
program and supports the streaming of video. JMF 2.1.1 supports SunVideo / SunVideoPlus capture
devices on Solaris [Sun02-1] and almost any Windows capture device that support the Video For Windows
(VFW) interface [Mic02-1]; JMF for Linux is supported through third-party software by Blackdown
[Bla02].
 JMF can be used by a Java application to interface with any JMF-compliant web cam. Video captured
from the web cam is streamed using RTP although other transport protocol can also be used with JMF.
JMF supports several video transmission formats including JPEG, H261, H263 MPEG-I. The ROWC
system uses JPEG because it is fully supported on all platforms and uses the lowest RTP payload [Sup02].
JMF also supports a variety of media types like the popular Apple QuickTime [App02] format.
 JMF uses a system of MediaLocators, SessionManagers, Players, Processors, DataSources, and
DataSinks for coordinating the capturing, transmission, and reception of time-based media. These objects
hide the underlying complexity associated with stream-based applications. These elements are briefly
summarized here. A more detailed description can be found in the JMF 2.0 API Guide [Sun99].

• MediaLocator – identifier for a media DataSource, similar to a URL.
• SessionManager – coordinates RTP sessions by keeping track of the session participants and the

streams that are being transmitted within the session.
• Player - processes an input stream of media data from a DataSource and renders it at a precise time. It

provides standard user controls like play, pause, etc.
• Processor – specialized type of Player that provides greater processing control on an input media

stream. It can output media to a media presentation device or to a DataSource.
• DataSource - delivers the input media-stream to a Player or Processor.
• DataSink - reads media data from a DataSource and renders the media to some destination (file,

network, RTP broadcaster, etc.).

 A MediaLocator object is used to access video for a web cam on a Windows computer like so:

MediaLocator mediaLocator = new MediaLocator("vfw://0");

Once the video feed is obtained, a DataSource is created to store the live video feed.

DataSource dataSource = Manager.createDataSource(mediaLocator);

This DataSource can be fed to a Player for the user to view the live video, or it can be sent to a Processor
that transforms the DataSource into a different type of DataSource. The code segment below shows the
web cam video feed being converted into an RTP-encoded DataSource for later transmission over the
network.

 Processor processor = Manager.createProcessor(dataSource);
 // Transform into RTP DataSource (code is omitted for brevity)
 DataSource rtpDataSource= processor.getDataOutput();

A converted DataSource can be stored to disk or transmitted across the network with the use of a DataSink.
The following example shows how a DataSink would be used to transmit an RTP-encoded DataSource to
the foobar computer on port 5050.

MediaLocator rtpLocator = new

MediaLocator(“rtp://foobar:5050/video”);
DataSink rtpTransmitter = Manager.createDataSink(rtpDataSource,

 10

rtpLocator);
rtpTransmitter.open();
rtpTransmitter.start();

If the web cam’s DataSource is to be transmitted over a network and recorded locally to file at the same
time, it must be created as a cloneable DataSource. A cloneable DataSource can be cloned any number of
times for different uses. The following shows how a cloneable DataSource is created from the web cam’s
DataSource:

DataSource cloneableDs =
Manager.createCloneableDataSource(dataSource);

The JMF objects discussed in this section allow a Java application easy access to time-based media. A
detailed description of how JMF is used by ROWC is discussed later in this thesis.

Architecture of System

 The ROWC system is composed three applications: the Media Server, the Cam Processor, and the Cam
Controller. All three of these applications were written in Java and use CORBA for communication. Each
application may reside on the same computer or on separate computers in a LAN. ROWC could also be
used over the Internet as long as each computer running the ROWC software is not hidden behind a
firewall or other type of obstruction. Some small code modifications may also be required due to the
pervasive use of computer host names which are unique on a LAN but aren’t necessarily on the Internet.
The unique host names are required by much of the software, and appending the host’s domain name will
be necessary to ensure the names are kept unique. For example, instead of just using the host name Oscar,
the name Oscar.ualr.edu would be required.

Cam Processors

Media Server

Cam Controllers

Streaming Video

Video Files Streaming Archived Media

Figure 3 – ROWC overview.

 11

 Figure 3 shows a high-level view of ROWC. A web cam interfaces with a PC on which the Cam
Processor application is executing. When a Cam Controller application operating on a PC decides to record
video, the media/video file is created by the Cam Processor application and transmitted to the Media Server
application for archiving. Any PC running the Cam Controller software can then view the media by having
it streamed from the Media Server to the Cam Controller.
 Detailed interaction of the Media Server, Cam Processor, and Cam Controller applications is shown in
Figure 4. All three processes make use of distributed objects for interacting with each other. The CORBA
Naming Service process is not displayed in Figure 4 for the sake of clarity. The Naming Service is for
registering all CORBA objects so remote access to the objects is made transparent.

Video
Database
Archive

Media Server

Cam Processor Cam Controller

Registration
Object

Cam Video
Callback
Object

Cam
Manager
Object

Cam
Controller
Callback
Object

Reg
ist

er
 / D

er
eg

ist
er

Ser
ve

r’s
Hos

t N
am

e

Start/Stop Transmission

and Recording

New Recording / Stream Available

Add / Remove

Cam Processors

Register / Deregister

Delete / Store

Video M
etadata /

 Stream
 URL

JDBCMedia Store
Object

Video File
Archive

Video Files

Video Files

Streaming
Video

Streaming Video

Media
Archive
Callback
Object

Register /
Deregister

Media Archive Events

Key

Application object

CORBA object

Socket connection

Method calls

RTP transmission

Figure 4 - Detailed view of ROWC.

 ROWC is very scalable, allowing any number of Cam Processors and Cam Controllers to be added
dynamically without changes to configuration files or source code. The system is ideally suited for an

 12

intranet where high-speed access is available to networking resources due to the somewhat high bandwidth
requirements of streaming video.
 ROWC was built using IONA’s ORBacus for Java 4.1 [ION02]. It is a free CORBA 2.4 compliant
ORB. The Windows XP platform was used along with Java 2 version 1.3.1 for developing ROWC. The
Logitech QuickCam [Log02] was used for surveillance on the PCs running the Cam Processor applications.
The PC running the Media Server software used Microsoft SQLServer 2000 for storing recorded video.
 The following sections will describe the major components of Figure 4 in detail. The sections will
cover the Media Server, the Cam Processor, and the Cam Controller and the distributed objects they use for
communication.

Media Server

 The Media Server application is responsible for archiving video files obtained from Cam Processors
and for streaming archived video to Cam Controllers. It is composed of the Registration object, the
MediaStore object, and has a graphical user interface (GUI) for viewing registered Cam Processors, Cam
Controllers, and archived media.

Figure 5 shows the Media Server application GUI. It displays a list of available Cam Processors and Cam
Controllers and all the archived media for a selected location.

Figure 5 - Media Server application.

 The Media Server must keep track of the media’s originating location, timestamp, length (in minutes),
and size (in bytes). This information is stored in the database, but the physical media file is left on disk.
Because video files often take up large amounts of disk space, it is more efficient to leave them on disk
than to place them into the database. Because all media files are stored in the same directory on disk, it is
important to ensure that each file’s name is unique. This is accomplished by combining the media file’s
location with its timestamp. Two media files from the same location should not have the same timestamp
unless the computer the Cam Processor was running on was tampered with. For example, a video from the

 13

COMPLAB location would be stored as COMPLAB_Fri_Jun_28_09_18_15_CDT_2002.mov. Any
additional video files from COMPLAB would have a different timestamp and thus a different file name.
 The Media Server runs in two separate threads. The first thread is for providing remote objects and
handling CORBA requests. The second thread is a TCP-based server socket thread that listens for
incoming video files from Cam Processors. Video files are sent to the Media Server using sockets instead
of CORBA octet streams because most CORBA implementations have been shown to be inefficient when
transporting large amounts of information due to excessive data-copying and expensive memory allocation
per request [GS98]. Sockets provide the most efficient means for transporting large amounts of data.
Unfortunately the high-performance benefits of socket programming are offset by its low-level interface
that increases the development effort of building and extending the system. Researchers have introduced
Blob Streaming Frameworks and other higher-level interfaces for gleaming the performance benefits
provided by sockets while decoupling the underlying communication details [PHS96].
 The Media Server implements two remote objects for use by Cam Processors and Cam Controllers: the
Registration and MediaStore objects. The Registration object provides information necessary for Cam
Processors and Cam Controllers to interact, and the MediaStore object is the Cam Controller’s interface for
accessing archived media. The following sections will give a detailed account of how the Registration and
MediaStore objects are used.

Registration Object

 The Registration object is housed by the Media Server for keeping track of available Cam Controllers
and Cam Processors. Both Cam Processors and Cam Controllers must register with the Registration object
when starting and stopping. Cam Controllers use the Registration object for discovery of available Cam
Processors. Cam Processors use the object to determine the Media Server’s host name so it that sockets can
be used for uploading video files to the Media Server.
 The IDL for the Registration interface is shown in Figure 6. A detailed discussion of this interface
follows.

 interface Registration
 {
 // Notify MediaServer that a new CamController has started
 oneway void addCamController(in string hostName, in CamControllerCallback callback);

 // Notify MediaServer that CamController is going down
 oneway void removeCamController(in string hostName);

 // Notify MediaServer that a new CamProcessor is available
 oneway void addWebCam(in string location);

 // Notify MediaServer that a CamProcessor is no longer available
 oneway void removeWebCam(in string location);

 // Used by CamProcessor to get MediaServer's host name
 string getServerHostName();

 // Return array containing locations of all active CamProcessors
 StringArray getLocations();
 };

Figure 6 - Registration object.

 Most of the Registration object’s methods are “oneway,” meaning that a call to the method can return
immediately and there is no expected return value from the method. This is ideal when a process does not
need to wait for a method to complete its work. For example, the addCamController() method does not

 14

need to wait for acknowledgement that it has indeed been registered with the Media Server. If the call did
block, the Cam Controller would have to wait until the function call returned which would momentarily
stop the Cam Controller from completing other necessary tasks.
 The addCamController() method is used by a Cam Controller application to notify the Media Server of
its existence. It is important that it registers with the Media Server so it will receive notification of the
availability of various Cam Controllers that also register with the Media Server. The Cam Controller’s host
name is necessary for the Media Server to keep track of all the registered Cam Controllers. Since the host
name is unique on a LAN, the Media Server can use it as a key. The CamControllerCallback is an object
that is implemented on the Cam Controller and is therefore a remote object to the Media Server. It’s
methods are called by the Media Server when Cam Processors come up and down. See the Cam Controller
section for further discussion of the CamControllerCallback object. When a Cam Controller is about to
terminate, it uses the removeCamController() method to deregister with the Media Server so the Media
Server will no longer attempt to send notifications to the Cam Controller.
 The addWebCam() and removeWebCam() methods are used by Cam Processors to register and
deregister with the Media Server. The Media Server keeps track of which Cam Processors are available so
Cam Controllers will know what locations are available for viewing and recording. The location argument
is a logical name for the Cam Processor’s location like “COMPLAB” or “ROOM100”.
 The getServerHostName() method is used by a Cam Processor to determine the Media Server’s host
name on the network. The host name is used by the Cam Processor to open the socket connection to the
Media Server so it can transport previously recorded video files to the Media Server.
 The getLocations() method is used by a Cam Controller to determine what locations are available for
controlling. All Cam Processors locations that have registered with the Media Server will be returned to
the calling Cam Controller.

MediaStore Object

 The Cam Processor uses the MediaStore object for video archiving and accessing information about
the archive. The IDL for the MediaStore interface is shown in Figure 7.

interface MediaStore
{
 exception LocationsUnavailable{};
 typedef sequence<VideoClip> Clips;

 // Register for listening for media archive events
 oneway void addMediaArchiveListener(in string hostName,

in MediaArchiveCallback callback);

 // Deregister for media archive events
 oneway void removeMediaArchiveListener(in string hostName);

 // Returns array of web cam names from the database. Raise the LocationsUnavailable
 // exception if there is an error retrieving locations.
 StringArray getArchiveLocations() raises(LocationsUnavailable);

 // Return information from database about all archived media at a given location
 void getAllVideoDetails(in string location, out Clips videos);

 // Deletes a set of videos for a given location from the database. Return true if successful.
 boolean deleteVideos(in string location, in StringArray names);

 // Store a video in the database.
 oneway void storeVideo(in VideoClip videoRec);

 15

 // Start streaming a particular video via RTP to the given destination IP address.
 string getVideoStream(in string location, in string name, in string destIPaddr);
};

Figure 7 - MediaStore object.

 All Cam Controllers register themselves for receiving notification of changes to the archive media
library using addMediaARchiveListener() when first initializing. When a new video is added to the archive
or a video is deleted, all Cam Controllers need to update their interface to display the change. Otherwise a
user with an outdated list of archived videos may attempt to view a video which had previously been
deleted by another Cam Controller user. When a Cam Controller is going down, the
removeMediaArchiveListerner() method is used to de-register for media archive events.
 The getArchiveLocations() method is used by Cam Controllers to determine what media archive
locations are available. (Throughout this paper, web cam locations and names will be synonymous. The
web cam name by default is the Cam Processor’s host name, but a more descriptive location name can also
be provided at startup time.) The archive location list is presented to the user for browsing the archive
library. The getAllVideoDetails() method provides the Cam Controller with timestamp, length, and size
information about the stored media. If the user of a Cam Controller wishes to delete a video, the
deleteVideo() method is called to remove the media from the database and from the Media Server’s file
system.
 The JDBC API is used for interfacing to the relational database system because it provides a standard
access to a wide variety of databases through the use of Structured Query Language (SQL). The ROWC
system was developed using Microsoft SQLServer 2000, but any relational database for which a JDBC
driver exists could be used.
 When a Cam Controller has finished recording video for a Cam Processor and transmitted the video via
sockets to the Media Server, the Cam Processor calls the storeVideo() method to send notification to the
Media Server that the previously transmitted video should be stored in the database. The physical video
file is also renamed to match its name in the database.

Cam Processor

 The Cam Processor application can be used on any personal computer that has a JMF compliant web
cam attached to it. Figure 8 shows the Cam Processor application GUI. It displays live feed from the web
cam and allows the user to stop viewing the live video if so desired.

Figure 8 - Cam Processor application.

 16

 The Cam Processor application houses the CamManager object for use by any Cam Controller wanting
to control the Cam Processor’s web cam. The CamManager allows a Cam Controller to receive live
streaming video and to record video that is archived on the Media Server. A callback mechanism is used to
notify the Cam Controller when a video stream is available or when a video has completed recording.
 The IDL for the CamManager interface is shown in Figure 9.

 interface CamManager
 {
 // Start streaming video to given host name. Callback's videoAvailable called when video
 // starts being transmitted. Returns false if video can't be transmitted because CamProcessor
 // is busy transmitting elsewhere, true otherwise.
 boolean startTransmission(in string hostName, in CamVideoCallback callback);

 // Stop current transmission of video.
 oneway void stopTransmission();

 // Start recording video from web cam to file for a maximum of milliseconds. The callback
 // is used to notify the CamController when the recording has been completed.
 boolean startRec(in long milliseconds, in CamVideoCallback callback);

 // Stop recording video.
 oneway void stopRec();
 };

Figure 9 - CamManager object.

 The startTransmission() method is called when the Cam Controller’s user wants to view live video from
the selected Cam Processor. The Cam Controller’s host name is sent to startTransmission() so that the Cam
Processor knows where to transmit the video. The CamVideoCallback object is used by the Cam Processor
for notifying the Cam Controller when the streaming video is available for viewing via RTP; initialization
of JMF takes a few seconds before transmission of the video begins. When the Cam Controller’s user is no
longer wanting to see live video from the web cam, the stopTransmission() method is used to stop the
streaming of the live video.
 The startRec() method is used by the Cam Controller to begin recording of live video from the selected
web cam to file. The recording of video will stop when the maximum number of milliseconds has been
reached or when the stopRec() method is called. The QuickTime format is used for storing the video file
on the Cam Processor’s hard drive. The CamVideoCallback object is use by the Cam Processor to notify
the Cam Controller when the recorded video is available for viewing. The video is only available when it
has been uploaded to the Media Server. Video can be streamed from the Cam Processor to the Cam
Controller at the same time it is being recorded. Unfortunately the extra processing load on the CPU tends
to degrade the quality of both the transmitted and recorded video.
 Another method that could have been employed for transmitting the recorded video to the Media Server
would have been to send an RTP stream during recording to the Media Server instead of recording the
video to file on the Cam Processor’s computer. The Media Server could then store the receiving RTP
stream to file, and uploading from the Cam Processor would no longer be required. Unfortunately this
solution would have resulted in degraded video quality due to lost frames during RTP transmission.
Recording the video directly to the Cam Processor’s hard drive results in the highest quality of video.
 Because Cam Processors do not make use of the MediaStore remote object, they do not have direct
access to the Media Server’s archive, nor do they need it. When a Cam Processor uploads a file to the
Media Server using a socket connection, the file is not immediately stored in the database. It remains
unprocessed on the Media Server’s hard drive until the Cam Controller notifies the Media Server of the
new media using the MediaStore object. Once notified, the Media Server then moves the uploaded video
file to its archive directory and stores the video metadata in the database.

 17

Cam Controller

 The Cam Controller application allows the user to control any Cam Processor’s web cam remotely.
Figure 10 shows the Cam Controller application GUI. The user may select any available location for
viewing, can start and stop recording, change the maximum recording time, open a local media file for
viewing, and can view or delete any archived media from the selected location.

Figure 10 - Cam Controller application.

 The Cam Controller makes heavy use of the MediaStore object for accessing archived videos and the
CamManager object for controlling web cams remotely. It only houses three objects: the
CamVideoCallback object for notification of live video streams and recordings, the CamControllerCallback
object for Cam Processor availability notification, and the MediaArchiveCallback object for notification of
new and deleted archive media. These objects are only used for callback notification of events and are
therefore always passed via a remote method invocation to a remote object. The remote object invokes the
proper method on the given object in order to notify the owner of the object of a certain event. The
callback model is explained in more detail in the “Dynamic View Updating of Media Archive Library”
section.
 Figure 11 shows the CamVideoCallback, CamControllerCallback, and MediaArchiveCallback IDL
interfaces.

interface CamVideoCallback
 {
 // Notify CamController of a new video clip that has been recorded.

 oneway void newRecording(in VideoClip video);

 // Notify CamController of video that is being streamed to the given URL.
 oneway void videoAvailable(in string url);

 };

 18

interface CamControllerCallback
{

 // Notifies all CamControllers that a new CamProcessor is available
 oneway void addWebCam(in string location);

 // Notifies all CamControllers that a CamProcessor is no longer available
 oneway void removeWebCam(in string location);

};

interface MediaArchiveCallback
{
 // Notify CamProcessor that a video has been archived for this location

 oneway void addVideo(in string location);

 // Notify CamProcessor that a video has been deleted at this location
 oneway void removeVideo(in string location);

};

Figure 11 – CamVideoCallback, CamControllerCallback, and MediaArchiveCallback objects.

 The CamVideoCallback object’s newRecording() method is called by a Cam Processor when recording
of a video from a web cam has completed and been uploaded to the Media Server. It notifies the Cam
Controller of the details of the video such as length, time stamp, and size (all members of the VideoClip
structure).
 The videoAvailable() method is used by a Cam Processor to notify the Cam Controller that streaming
video is available for viewing. In order to view the streaming video, the Cam Controller only needs the
URL which contains the port number on which the Cam Processor is transmitting the video to the Cam
Controller. For example, the following URL would be transmitting video on port 5010 to the foobar
computer: rtp://foobar:5010/video
 The CamControllerCallback object is used by a Cam Controller to be notified by the Media Server
when a location is/is not available for viewing. When a Cam Processor starts up, it registers with the Media
Server, and the Media Server uses each Cam Controller’s CamControllerCallback object to notify it of the
newly available location. Similarly, when a Cam Processor goes down, the Media Server notifies all the
Cam Controller’s of the Cam Processor’s demise.
 The Media Server’s MediaStore object uses a Cam Controller’s MediaArchiveCallback object to notify
the Cam Controller of additions and deletions to the media archive by calling the MediaArchiveCallback’s
addVideo() and removeVideo() methods. The Cam Controller needs this information so it can update it
GUI representation of the media archive.

Dynamic View Updating of Media Archive Library

 Both the Media Server and the Cam Controller need to update their GUI when changes to the underlying
media archive library occur. The model-view-controller (MVC) design pattern [GHJ95] was used to
efficiently implement this problem. The MVC design pattern consists of three entities that are logically
separated to enhance the ability to modify and add-on to the application: the model, the controller, and the
view. The model represents the application data, the media archive library. The controller handles all
changes to the model, the receiving of new videos or deletions to the archive. The view represents the
outward appearance of the model, the table showing all the media archive data. So whenever the
MediaStore object (the model) is changed, the Media Server and Cam Controllers are notified to update
their GUI (the view).
 Figure 12 shows two different methods for dynamically updating each view since the MediaStore
object is local for the Media Server and remote for the Cam Controller. On the Media Server, the events

 19

are implemented using the same event-handling mechanism that Java Swing and AWT components use
[DD02]. The Swing/AWT event-handling mechanism involves providing an event listener interface which
is implemented by an event handler. The event handler is registered for notification of the event by the
listening object, and the event handler is then notified when the particular event occurs. Using this event-
handling mechanism, the Media Server registers as a MediaArchiveListener event handler which receives
MediaArchiveEvents when new videos are received or videos are deleted. The events are then reflected in
the GUI.

Media Server

Cam Controller

addVideo /
removeVideo

MediaStore
Object

Viewer
Object GUI

Viewer
Object GUI

Update

Update

MediaArchive
Events

Media
Archive
Callback
Object

Figure 12 - Updating GUI when media archive is changed.

 Cam Controllers on the other hand use the CORBA callback model [TS02]. The callback model is
useful for asynchronous event notification. For example, assume a client needs to know about a particular
event that will eventually take place on the server. The client will need to provide an object to the server
that contains methods the server will invoke when the events take place. Because the client’s object is
remote to the server, it is defined with IDL just like any other CORBA object. Using the callback model,
each Cam Controller registers itself for media archive events using a locally implemented
MediaArchiveCallback (Figure 11) object. The object is sent to the MediaStore when the Cam Controller
initializes. The MediaStore then calls the MediaArchiveCallback’s addVideo() and removeVideo()
methods when changes to the media archive are made.
 OMG’s CORBA Event service [OMG01] or the newer Notification service [OMG00-1] could also be
used for notifying the Cam Controller of changes to the MediaStore. The Event service provides a
mechanism for pushing or pulling un-typed events from an event supplier to an event consumer. An event
channel decouples the consumer from the supplier. In the push model, the supplier pushes an event through
the event channel which is then passed on to the consumer. In the pull model, the consumer polls the event
channel for new events from the supplier. The Notification service builds upon the Event services by
providing the ability to register for particular types of events. In the ROWC scenario, Cam Controllers
would register themselves as event consumers, and the Media Store would register itself as an event
producer. Using the push model, the Cam Controllers would be notified asynchronously when a change to
the media archive was made. The CORBA event services are useful in larger distributed systems where
management and proliferation of events are more difficult to control.

ROWC JMF Architecture

 This section provides a summary of how JMF is used by ROWC to capture video from a web cam,
display live video to a user, transmit live video across a network, and store live video to disk.

 20

Cloned
DataSource Processor DataSinkQuickTime

DataSource .mov file

Cloned
DataSource Processor RTP-encoded

DataSource
NetworkDataSink

Capture
DataSource Player

Monitor

Figure 13 - Cam Processor: Video from a web cam is captured and cloned for viewing, streaming,
and storing to file.

Figure 13 shows how the Cam Processor application clones the DataSource that is associated with the web
cam. A Player is used to view the live feed from the web cam, and separate Processors are used to transmit
the video across the network and record to file. The QuickTime format is used for storing video to file.
 Figure 14 shows how a Cam Controller application displays streaming video from a Cam Processor or
Media Server to the user. The streaming video is accessed using an RTP SessionManager. When a video
stream becomes available, the SessionManager creates an RTP-encoded DataSource that is fed into a
Player. The Player allows the Cam Controller user to see the live video stream. If the streaming video is
halted because the Cam Processor is brought down or the video file has finished being streamed from the
Media Server, the SessionManager is alerted and stops the Player. A SessionManager would not be
necessary if the Media Server notified the Cam Controller via callbacks when the video streaming had
finished. In the case of the Cam Processor, the SessionManager is not necessary at all since the Media
Server already notifies all Cam Controllers when a Cam Processor is no longer available. Figure 14 shows
this process in detail.

RTP-encoded
DataSourceNetwork RTP Session

Manager Player

Monitor
Figure 14 – Cam Controller: Streaming RTP video is sent to a Player for viewing.

Figure 15 shows how the Media Server application transmits archived video over the network to Cam
Controllers. QuickTime video files are first converted to JPEG/RTP encoding. Then it is transmitted over
the network using a DataSink. Once the video has finished streaming, the DataSink and Processor are
closed and removed. Closing of the RTP channel signals the receiving Cam Controller that transmission of
the archived media is complete.

.mov file
QuickTime
DataSource Processor RTP-encoded

DataSource NetworkDataSink

Figure 15 – Media Server: A QuickTime file is streamed with RTP over the network.

 21

Related Work

 The ROWC system concept of remote video access could be applied to many domains such as
teleconferencing, virtual collaboration, and telepresence.
 Although JMF provides the capability to interface with web cams and to stream time-based media, it
does not currently provide a higher-level API for QoS provisioning, security, and media archiving. These
components must be built on top of JMF. The use of multimedia middleware can provide these missing
components without re-implementation.
 MAESTRO [HSK97] and Da CaPo++ [SCW99] are two recent implementations of multimedia
middleware that have been developed to support the development of distributed multimedia communication
applications. Both sets of middleware provide a layer between a particular multimedia device API and the
underlying network used to transmit the multimedia. The middleware is not intended to fill the role that
JMF which provides device-independent access to multimedia devices like web cams. They instead offer
an array of services not provided by JMF that facilitate the building of distributed multimedia systems. The
services include session management (for managing the connection between media producers and
consumers), security services (for encryption and authentication of streams, users, and QoS parameters),
and QoS management (for dynamic changes to QoS). MAESTRO provides an additional media storage
service that is useful for storing multimedia objects transparently.
 OMG offers an audio/video (A/V) streaming model for CORBA-based distributed multimedia
streaming frameworks [OMG00-2]. The model allows stream connection and management with higher-
level CORBA operations while using efficient lower-level transport protocols like ATM, UDP, TCP, and
RTP. The A/V Streaming Service has been implemented by the ACE ORB (TAO) [ACE02] and
demonstrated [LH00] to be useful for hiding the complexities of stream transport.
 Another approach to the A/V streaming model in CORBA is taken by MULTE-ORB [EKP00].
MULTE-ORB is an attempt to provide additional multimedia middleware capabilities to an ORB by
providing stream binding and management for stream flows within the CORBA paradigm. It also provides
a flexible protocol framework that allows transport protocols to be dynamically modified or reconfigured.

DSS Surveillance System Implementation

 ROWC shares several characteristics with the Distributed Surveillance Services (DSS) system
developed at the National Kaohsiung First University [LC99]. DSS was built using Java/CORBA/RMI
with a C++ interface for the video camera. JMF was not used for implementation because of its lack of
maturity at the time DSS was built. Thus the DSS video camera interface is inherently non-portable
without code changes.
 In order to reduce network load, DSS stores a series of JPEG images instead of a video stream. Each
image is placed in an array of bytes for transferring across the ORB. This approach was also used in the
first version of the ROWC system when only a single snapshot could be captured from a web cam. Since a
JPEG image is relatively small compared to a video stream, using the ORB for the transport layer was
convenient and efficient. This approach was later abandoned when ROWC was converted from still
images to video.
 DSS used signed Java applets for deployment of Surveillance Monitors, similar to Cam Controllers.
This approach requires downloading ORB support files along with the applet which can make accessing the
application rather slow initially. Developers benefit from implementing the system with applets because it
is easier to deploy the system (the user only needs a Java-enabled browser) and bug fixes can quickly be
dispatched (each time the applet is accessed for the first time, the most recent version of the software is
downloaded). Similar benefits are also provided by Sun’s newest model of application deployment called
Java Web Start (JWS) [Sun02-3]. JWS provides quicker launching of applications than using the applet
model because all application files are cached on the user’s machine. Applets only remain cached by the
browser for a limited time. ROWC could be distributed with JWS with no code changes.

 22

ezlinX Surveillance System

 A successful commercial video surveillance system called ezlinX was recently built using JMF to
provide security for small to medium-sized businesses [NOO02]. ezlinX provides live video transmission
and recording like ROWC but also provides a host of other features like authentication, motion detection,
alarms, etc. Although JMF was used for building their software, they had to re-write several major
components of JMF due to limitations of the framework [Bin02].

Future System Enhancements

 There are several directions that ROWC could be taken for future research and improvements that
would make it more useful as a true surveillance system. A summary of these items is presented here.

QoS Provision

 A provision for QoS constraints on a ROWC video stream would produce higher quality video for Cam
Controllers that operate in heterogeneous environments. For example, a Cam Controller operating on a low
bandwidth network would need a video streamed with a lower frame rate in order to see live video from a
Cam Processor. A Cam Controller operating on a higher bandwidth network could receive the same video
stream at a higher frame rate.
 A video conferencing system using JMF called JQoS demonstrates the successful use of QoS measures
using an intermediary SessionManager between a Source and Receiver process [ZG01]. The
SessionManager regulates the frame rate between Source and Receiver by monitoring RTCP reports and
QoS requests from the Receiver and making the necessary QoS adjustments. Some adjustment requests are
forwarded to the Source which may also need to adjust its transmission to match the QoS parameters. A
similar integration of QoS constraints into ROWC would be especially useful if ROWC were to be used
outside a local intranet where network heterogeneity is the norm. Earlier discussions in this paper
mentioned the use of multimedia middleware that also provides QoS services.

Multiple Access of Cam Processor

 ROWC only allows a single Cam Controller to view streaming video from a single Cam Processor. If a
second Cam Controller tries to view video from a busy Cam Processor, it is denied access. If this
functionality were necessary, the Cam Processor would need to use an RTP SessionManager to clone
additional web cam DataSources for streaming to multiple Cam Controllers [Sun99]. This would degrade
video quality for each Cam Controller due to the overhead incurred when streaming video for each session.
For transmission to more than a few Cam Controllers, a better approach would be to use a multicast
transmission. This would require some additional overhead to organize Cam Controllers into members of a
specified multicast group for receiving video from the same Cam Processor. Multicast transmissions are
usually not supported outside of local intranets.

Media Server Improvements

 ROWC is ideal in a small environment where concurrent access to the Media Server is limited to one or
two Cam Controllers at a time. Because the Media Server stores all video files on its local hard disk, a
large number of concurrent accesses of the same video file by multiple Cam Controllers could lead to
degraded transmission. Increasing the number of concurrent accesses can be improved with file replication
(making multiple copies of the same file on different disks) or data stripping [Gem95]. The data stripping

 23

method stores a single video file across multiple disks so that the file can be read in parallel. This method
takes less disk space than file replication, but requires increased complexity in file storage.
 A method for providing fault tolerance to ROWC is crucial to keep archived media from disappearing
in the event of a hard drive crash or network interruptions incurred by the Media Server. In the first case,
redundancy of video files and database information is necessary for the Media Server to retain an up-to-
date archive. Mirroring schemes have shown to be useful in improving fault tolerance of media servers
[Mou96] although the increase in storage volume is somewhat costly.

Conclusion

 The ROWC system was built using Java, JMF, and CORBA to perform surveillance using a personal
computer and JMF-enabled web cam. The ability to archive recorded video was also built into ROWC.
The three applications making up ROWC (the Media Server, Cam Processor, and Cam Controller) can be
ran on separate computers connected in a network or on the same PC.
 The combination of CORBA and JMF has been demonstrated by the ROWC system to be sufficient for
producing a distributed video surveillance system that is portable, flexible, and extendable. Many areas of
ROWC are open for improvement, such as provision for QoS constraints and providing a multicast stream
from a single Cam Processor’s web cam. Related work demonstrating the use of multimedia middleware
and standardized CORBA media interfaces could also be used to improve ROWC.
 Our experience in building ROWC has uncovered some JMF bugs that have caused core dumps. Other
developers have experienced similar problems with JMF [JMF02-1]. Sun is currently in the process of
refining and extending JMF, and future versions are likely to be more stable [JMF02-2]. Sun also provides
the complete JMF source code for developers who need to fix bugs, extend functionality, or remove
bottlenecks for use in their application.

Appendix

A representative amount of code from the ROWC system is shown here. For access to the complete source
code, please contact the author.

// rowc.idl

// IDL interface definitions for ROWC system.

// Copyright (C) 2002 by Frank McCown
// University of Arkansas at Little Rock
// July 2002

// Compile with Orbacus: jidl rowc.idl

module rowc
{
 // Unbounded "array" of strings
 typedef sequence<string> StringArray;

 struct VideoClip
 {

 24

 string location; // Location of the video
 string name; // Video name determined by timestamp
 long size; // Size of video in bytes
 long length; // Length in seconds
 long long timeStamp; // In milliseconds
 };

 interface CamVideoCallback
 {
 // Notify CamController of a new video clip that has been recorded.
 oneway void newRecording(in VideoClip video);

 // Notify CamController of video that is being streamed to the given URL.
 oneway void videoAvailable(in string url);
 };

 interface CamManager
 {
 // Start streaming video to given host name. Callback's videoAvailable called when video
 // starts being transmitted. Returns false if video can't be transmitted because CamProcessor
 // is busy transmitting elsewhere, true otherwise.
 boolean startTransmission(in string hostName, in CamVideoCallback callback);

 // Stop current transmission of video.
 oneway void stopTransmission();

 // Start recording video from web cam to file for a maximum of milliseconds. The callback
 // is used to notify the CamController when the recording has been completed.
 boolean startRec(in long milliseconds, in CamVideoCallback callback);

 // Stop recording video.
 oneway void stopRec();
};

interface MediaArchiveCallback
{
 // Notify CamProcessor that a video has been archived for this location
 oneway void addVideo(in string location);

 // Notify CamProcessor that a video has been deleted at this location
 oneway void removeVideo(in string location);
};

interface MediaStore
{
 exception LocationsUnavailable{};
 typedef sequence<VideoClip> Clips;

 // Register for listening for media archive events
 oneway void addMediaArchiveListener(in string hostName, in MediaArchiveCallback callback);

 // Deregister for media archive events
 oneway void removeMediaArchiveListener(in string hostName);

 25

 // Return unbounded array of web cam names from the database.
 // Raise LocationsUnavailable if error retrieving locations.
 StringArray getArchiveLocations() raises(LocationsUnavailable);

 // Return information from database about all archived media at a given location
 void getAllVideoDetails(in string location, out Clips videos);

 // Deletes a set of videos for a location from the database. Return true if successful, false otherwise.
 boolean deleteVideos(in string location, in StringArray names);

 // Store a video in the database.
 oneway void storeVideo(in VideoClip videoRec);

 // Start streaming a particular video via RTP to the given destination IP address.
 string getVideoStream(in string location, in string name, in string destIPaddr);
};

interface CamControllerCallback
{
 // Notifies all CamControllers that a new CamProcessor is available
 oneway void addWebCam(in string location);

 // Notifies all CamControllers that a CamProcessor is no longer available
 oneway void removeWebCam(in string location);
};

 interface Registration
 {
 // Notify MediaServer that a new CamController has started

oneway void addCamController(in string hostName, in CamControllerCallback callback);

 // Notify MediaServer that CamController is going down
 oneway void removeCamController(in string hostName);

 // Notify MediaServer that a new CamProcessor is available
 oneway void addWebCam(in string location);

 // Notify MediaServer that a CamProcessor is no longer available
 oneway void removeWebCam(in string location);

 // Used by CamProcessor to get MediaServer's host name
 string getServerHostName();

 // Return array containing locations of all active CamProcessors
 StringArray getLocations();
 };
};

/* CamProcessor.java
 *
 * Application that interfaces with a web cam and allows remote CamControllers
 * to control the web cam.
 *
 * Optional startup arguments:

 26

 * -loc used for overriding location name. Default is computer's host name.
 * -file used to play a local QuickTime movie file
 *
 * Copyright (C) 2002 by Frank McCown
 * University of Arkansas at Little Rock
 * July 2002
 */

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.PortableServer.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.*;
import java.io.*;
import javax.media.*;
import javax.media.protocol.*;
import rowc.*;

public class CamProcessor extends JFrame
{
 private final int DEFAULT_WINDOW_WIDTH = 470;
 private final int DEFAULT_WINDOW_HEIGHT = 370;

 private static final String PROPERTY_FILE = "project.conf";

 private static String fileSpecified = null; // Used for movie files (when no web cam is available)

 public static boolean quitting = false;

 private static NameComponent camManagerNC[];
 private static NamingContext ncRef;

 public static Registration regObject; // Ref to remote object
 private static CamManagerImpl camManager; // Created servant

 private JButton btnGetFile;
 public static JLabel lblInfo;
 private JLabel lblLocation;
 private JCheckBox viewVideoCheckBox;
 public static JScrollPane videoScrollPane;
 public static VideoTransmitter vt;
 public static TransmitterThread transThread;
 private ProcessorVideoPanel videoPanel; // Panel that displays live video
 public static DataSource dataSource = null; // Connected to web cam

 public static String location = ""; // Unique identifier for cam processor

 // Constructor
 private CamProcessor()
 {
 super("Cam Processor");

 videoPanel = new ProcessorVideoPanel();

 27

 // Tell Server about us so he'll add us to his list
 if (regObject != null)
 regObject.addWebCam(location);

 // Start thread to produce video for video player
 ViewingThread vThread = new ViewingThread();
 vThread.start();

 Container c = getContentPane();
 c.setLayout(new GridBagLayout());

 videoScrollPane = new JScrollPane(videoPanel);

 //for loading two frames
 viewVideoCheckBox = new JCheckBox("View Video", true);
 viewVideoCheckBox.addItemListener(new ItemListener()
 {
 public void itemStateChanged(ItemEvent e)
 {
 // Show/hide video panel when selected/deselected

 if (e.getStateChange() == ItemEvent.SELECTED)
 videoPanel.setVisible(true);
 else if (e.getStateChange() == ItemEvent.DESELECTED)
 videoPanel.setVisible(false);
 }
 });

 lblLocation = new JLabel("Location: " + location);

 lblInfo = new JLabel();
 lblInfo.setForeground(Color.red);

 c.add(videoScrollPane, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0,
 GridBagConstraints.CENTER, GridBagConstraints.BOTH, new Insets(5, 5, 5, 5), 217, 202));
 c.add(viewVideoCheckBox, new GridBagConstraints(1, 0, 1, 1, 0.0, 0.0,
 GridBagConstraints.CENTER, GridBagConstraints.NONE, new Insets(5, 5, 5, 5), 0, 0));
 c.add(lblLocation, new GridBagConstraints(0, 1, 2, 1, 0.0, 0.0,
 GridBagConstraints.WEST, GridBagConstraints.NONE, new Insets(5, 5, 5, 5), 0, 0));
 c.add(lblInfo, new GridBagConstraints(0, 2, 2, 1, 0.0, 0.0,
 GridBagConstraints.WEST, GridBagConstraints.NONE, new Insets(5, 5, 5, 5), 0, 0));

 setSize(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT);
 show();
 }

 private void showError(String error)
 {
 JOptionPane.showMessageDialog(this, error, "CamProcessor Error",
 JOptionPane.ERROR_MESSAGE);
 }

 private static void activateCamManager(org.omg.CORBA.ORB orb)
 {

 28

 try
 {
 // get reference to rootpoa & activate the POAManager
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 rootPOA.the_POAManager().activate();

 // Create the servant
 camManager = new CamManagerImpl(location);
 rowc.CamManager href = camManager._this(orb);

 String host = regObject.getServerHostName();
 camManager.setServerName(host);

 // Get the root naming context
 ncRef = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));

 // Bind the Object Reference in Naming
 String camName = "CamManager_" + location;
 camManagerNC = new NameComponent[1];
 camManagerNC[0] = new NameComponent(camName,"");
 ncRef.rebind(camManagerNC, href);

 }
 catch (Exception e)
 {
 System.out.println("Error trying to activate CamManager implementation.");
 e.printStackTrace();
 }
 }

 public static void transmitVideo(String hostName)
 {
 // Create new thread for transmitter going to new location
 transThread = new TransmitterThread(hostName);
 Thread thisThread = Thread.currentThread();
 transThread.start();
 }

 public static void stopTransmitVideo()
 {
 transThread = null;
 }

 public static void main(String[] args)
 {
 // Attempt to read location from command line

 for (int i=0; i < args.length; i++)
 {
 if (args[i].equals("-loc"))
 {
 if(i+1 >= args.length)
 {

 System.err.println("Argument expected for " + args[i]);
 System.exit(0);

 }

 29

 StringBuffer loc = new StringBuffer(args[i+1]);
 location = loc.toString().toUpperCase();
 i++; // Skip "-loc" next iteration
 }

 else if (args[i].equals("-file"))
 {
 if(i+1 >= args.length)
 {

 System.err.println("Argument expected for " + args[i]);
 System.exit(0);
 }

 fileSpecified = new StringBuffer(args[i+1]).toString();
 i++; // Skip "-file" next iteration
 }
 }

 // Get ip addr for this computer to be used for creating a receiver
 try
 {
 java.net.InetAddress ia = java.net.InetAddress.getLocalHost();
 String ipAddr = ia.getHostAddress();
 if (location.length() == 0)
 location = ia.getHostName().toUpperCase(); // Use host name for location
 }
 catch (java.net.UnknownHostException ex)
 {
 ex.printStackTrace();
 }

 java.util.Properties props = System.getProperties();

 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
 props.put("org.omg.CORBA.ORBSingletonClass", "com.ooc.CORBA.ORBSingleton");

 try

 {
 // Read properties from project property file that indicates location
 // of Name and Event Services.

 FileInputStream f = new FileInputStream(PROPERTY_FILE);
 props.load(f);
 f.close();
 }
 catch (Exception e)
 {
 System.out.println("Could not load properties from " + PROPERTY_FILE);
 e.printStackTrace();
 }

 final org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

 // Get objects by name
 try
 {
 // Get naming service
 NamingContext nc = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));

 30

 // Get remote object using Naming Service

 NameComponent[] ncArray = new NameComponent[1];
 ncArray[0] = new NameComponent("Registration","");

 regObject = rowc.RegistrationHelper.narrow(nc.resolve(ncArray));

 // Activate CamManager
 activateCamManager(orb);
 }
 catch (org.omg.CORBA.TRANSIENT e)

 {
 e.printStackTrace();
 JOptionPane.showMessageDialog(null,
 "Unable to locate Naming Service.\nMake sure Naming Service is running.",
 "Cam Processor Error", JOptionPane.ERROR_MESSAGE);
}

 catch (Exception e)
 {
 e.printStackTrace();
 JOptionPane.showMessageDialog(
 null,"Error finding Registration.\nMake sure the CORBA server is running.",
 "Cam Processor Error", JOptionPane.ERROR_MESSAGE);
 }

 final CamProcessor app = new CamProcessor();
 app.addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 quitting = true; // Setting this will cause transmitter thread to quit

 try
 {
 camManager.stopRec();

 // Deregister with server since we'll no longer be available and unbind from
 // Naming Service or CamManager for this location will remain

 regObject.removeWebCam(location);
 ncRef.unbind(camManagerNC);

 // Stop and close the live video window
 app.videoPanel.stop();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }

 ((com.ooc.CORBA.ORB)orb).destroy();

 System.exit(0);
 }

 });
 }

 31

 // Internal class
 class ViewingThread extends Thread
 {
 public void run()
 {
 // Create a DataSource that will be cloned by the VideoTransmitter
 try
 {
 DataSource ds;
 MediaLocator ml;

// VFW is for Windows. Use "sunvideoplus://0/1/JPEG" for Solaris
 if (fileSpecified == null)
 ml = new MediaLocator("vfw://0");
 else
 ml = new MediaLocator("file://" + fileSpecified);

 ds = Manager.createDataSource(ml);
 dataSource = Manager.createCloneableDataSource(ds);

 // Only open videoPanel once the vt's dataSource is set...
 if (!videoPanel.open(dataSource))
 showError("Unable to play the data source.");
 else
 videoScrollPane.revalidate(); // Makes scroll pane show its contents
 }
 catch (Exception e)
 {
 e.printStackTrace();
 if (fileSpecified == null)
 showError("Unable to connect to capture device.\nA compatible web cam must “+

“be installed for this application to stream video.");
 else
 showError("Unable to open file " + fileSpecified + " to display.");
 }

 }
 }
} // End CamProcessor

// Must be external class because it is instantiated using a public static method.

class TransmitterThread extends Thread
{
 private String hostName;

 TransmitterThread(String hostName)
 {
 this.hostName = hostName;
 }

 public void run()
 {

 32

 CamProcessor.vt = new VideoTransmitter(
 ((SourceCloneable)CamProcessor.dataSource).createClone(), hostName, "5050");

 String result = CamProcessor.vt.start();
 if (result != null)

 {
 System.err.println("Failed to start VideoTransmitter: " + result);
 return;
 }
 else

 System.out.println("Started VideoTransmitter.");

 CamProcessor.lblInfo.setText("Transmitting to host " + hostName + " on port 5050.");

 Thread thisThread = Thread.currentThread();

while (CamProcessor.transThread == thisThread && !CamProcessor.quitting)
{
 try
 {

 thisThread.sleep(1000);
 }
 catch (InterruptedException e) {}

 }

 CamProcessor.vt.stop();

 CamProcessor.lblInfo.setText("");
 }
}

/* CamManagerImpl.java
 *
 * Object is created by a CamProcessor and used by a CamController to control
 * a web cam remotely.
 *
 * Copyright (C) 2002 by Frank McCown
 * University of Arkansas at Little Rock
 * July 2002
 */

import java.io.*;
import java.util.*;
import rowc.*;

public class CamManagerImpl extends CamManagerPOA
{
 protected Hashtable callbacks;
 protected CamVideoCallback callback;
 private String camLocation; // location of cam manager
 private RTPExport export;
 private String serverHostName = null;

 private final String TEMP_VIDEO_FILENAME = "temp.mov";

 private boolean transmittingVideo = false;

 33

 private boolean recordingVideo = false;

 public CamManagerImpl(String location)
 {
 camLocation = location;

 export = new RTPExport();
 callbacks = new Hashtable();
 }

 // Need server's host name to connect with socket
 public void setServerName(String hostname)
 {
 serverHostName = hostname;
 }

 /**
 *
 * Remote method implementations
 *
 ***/

 // Start transmitting live video stream to CamController at given ipAddr.
 // The callback is used for notifiying CamController when the transmission
 // has begun. Return false if already bust transmitting, true otherwise.
 public synchronized boolean startTransmission(String hostName, CamVideoCallback callback)
 {
 if (transmittingVideo)
 return false;

 transmittingVideo = true;

 // The callback gets called when video is finished
 this.callback = callback;

 // Start sending video to ipAddr and notify receiver of incoming RTP transmission
 String url = "rtp://" + hostName + ":5050/video";

 System.out.println("sending to "+url);

 CamProcessor.transmitVideo(hostName);

 callback.videoAvailable(url);

 return true;
 }

 // Stop transmitting live video stream to CamController.
 public void stopTransmission()
 {
 transmittingVideo = false;

 CamProcessor.stopTransmitVideo();

 34

 }

 // Start recording to file. Return false if already busy recording to file,
 // true otherwise.
 public boolean startRec(int maxRecTime, CamVideoCallback callback)
 {
 System.out.println("startRec called");

 if (recordingVideo)
 return false;

 recordingVideo = true;

 // The callback gets called when video is finished
 this.callback = callback;

 // Start in new thread so we can return from this function immediately. This allows
 // stopRec to be called.
 ExportThread et = new ExportThread(maxRecTime);
 et.start();

 return true;
 }

 // Send video file from CamProcessor to MediaServer using sockets.
 private void transmitFile()
 {
 BufferedOutputStream fos = null;
 java.net.Socket socket = null;

 try

{
 // open a socket connection. Need server host name and socket
 socket = new java.net.Socket(serverHostName, FileServer.FILE_SERVER_PORT);

 // open I/O streams for objects
 fos = new BufferedOutputStream(socket.getOutputStream());

 File transferFile = new File(TEMP_VIDEO_FILENAME);
 BufferedInputStream fin = new BufferedInputStream(new FileInputStream(transferFile));

 // First write out location so Server can name file.
 String fileName = camLocation + "\n";
 byte byteArray[] = new byte[fileName.length()];
 byteArray = fileName.getBytes();

 fos.write(byteArray);

 int c = fin.read();
 while (c != -1)

 {
 fos.write(c);

 c = fin.read();
 }

 fin.close();

 35

 fos.close();
}

 catch(Exception e)
 {

 System.out.println("Error transmitting file to Server.");
 e.printStackTrace();

 }
}

 // Stop recording video stream.
 public void stopRec()
 {
 export.stopExport();
 recordingVideo = false;
 }

 // Thread to export video to file, transmit to MediaServer, and notify CamController
 class ExportThread extends Thread
 {
 private int maxRecTime;

 ExportThread(int maxRecTime)
 {
 this.maxRecTime = maxRecTime;
 }

 public void run()
 {
 // Generate output media locators

 String currentDir = System.getProperty("user.dir");
 String fileName = currentDir + "/" + TEMP_VIDEO_FILENAME;

 javax.media.MediaLocator oml = new
 javax.media.MediaLocator("file:/" + fileName);

 CamProcessor.lblInfo.setText("Recording to file... ");

 // Must create clone of data source so video continues to play in CamProcessor.
 if (!export.startExport(
 ((javax.media.protocol.SourceCloneable)CamProcessor.dataSource).createClone(),
 //CamProcessor.dataSource,
 oml, maxRecTime))
 {
 System.err.println("RTPExporting failed");

 VideoClip video = new VideoClip("","",0,0,0);
callback.newRecording(video);

 }
 else
 {
 // Notify client of new media

 VideoClip video = new VideoClip();
 video.location = camLocation;
 video.timeStamp = System.currentTimeMillis();

 36

 // Name is taken from timestamp. Replace spaces and : with underscores
 video.name = new java.util.Date(video.timeStamp).toString();
 video.name = video.name.replace(' ', '_');
 video.name = video.name.replace(':', '_');

 File f = new File(TEMP_VIDEO_FILENAME);
 video.size = (int)f.length();

 video.length = export.actualRecTime; //maxRecTime;

 // Now that video is produced, send it to Server for storing using sockets

 CamProcessor.lblInfo.setText("Transmitting to server... ");
 transmitFile();

 CamProcessor.lblInfo.setText("");

 // Notify CamController of new video
 callback.newRecording(video);

 recordingVideo = false;
 }
 }
 } // end ExportThread
}

References

[ACE02] ACE ORB, The, May 2002, <http://www.cs.wustl.edu/~schmidt/TAO.html>.

[App02] Apple Computer, QuickTime, June 2002, <http://developer.apple.com/quicktime>.

[Bin02] Binet, G., JMF interest mailing list, May 2002, June 2002,

<http://swjscmail1.java.sun.com/cgi-bin/wa?A2=ind0205&L=jmf-
interest&P=R22937>.

[Bla02] Blackdown, “Java Media Framework for Linux,” May 2001, June 2002,

<http://www.blackdown.org/java-linux/jdk1.2-status/jmf-status.html>.

[DD02] Deitel, H. M. and P. J. Deitel, Java How To Program, 4th ed., Prentice Hall, 2002,

pp. 660-661.

[EKP00] Eliassen, F., T. Kristensen, T. Plagemann, H. Rafaelsen, “MULTE-ORB: Adaptive QoS

Aware Binding,” 2000, June 2002, <http://unik.no/~tomkri/papers/eliassenrm00.ps>.

[Gem95] Gemmell, D. J., “Multimedia Storage Servers: A Tutorial,” IEE Computer

Magazine, vol. 8, no. 5, May 1995.

 37

[GHJ95] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995, pp. 4-6.

[GS98] Gokhale, A., and D. C. Schmidt, “Measuring and Optimizing CORBA Latency

and Scalability Over High-speed Networks,” Transactions on Computing, Vol. 47, No. 4,
1998.

[HSK97] Hong, J., Y. Shin, M. Kim, J. Kim, and Y. Suh, “Design and Implementation of

a Distributed Multimedia Collaborative Environment,” 1997, June 2002,
<http://dpnm.postech.ac.kr/maestro>.

[ION02] IONA Technologies, ORBacus for C++ and Java, June 2002,

<http://www.iona.com/products/orbacus_home.htm>.

[JMF02-1] JMF interest mailing list, June 2002,

<http://swjscmail1.java.sun.com/cgi-bin/wa?A2=ind0206&L=jmf-
interest&D=0&P=2733>.

[JMF02-2] JMF interest mailing list, June 2002,

<http://swjscmail1.java.sun.com/cgi-bin/wa?A2=ind0107&L=jmf-
interest&P=R34476&m=12699>.

[LC99] Li, S., and W. Chen, “A Java-centric Distributed Object-based Paradigm for

Surveillance Services and Visual Message Exchange,” Journal of Visual
Languages and Computing, No. 10, 1999.

[LH00] Lai, B., and H.E. Hanrahan, “The Design of a TINA based Stream

Management/Binding Framework,” SATCAM 2000 Proceedings, July 2000.

[Log02] Logitech QuickCam, June 2002, <http://www.quickcam.com/html/index2.html>.

[Mic02-1] Microsoft, Windows Platform SDK: Video For Windows, June 2002,

<http://msdn.microsoft.com>.

[Mic02-2] Microsoft, Streaming Methods: Web Server vs. Streaming Media Server,

June 2002, <http://www.microsoft.com/Windows/windowsmedia/compare/
webservvstreamserv.asp>.

[Mou96] Mourad, A., “Doubly-striped Disk Mirroring: Reliable Storage for Video

Servers,” Multimedia, Tools and Applications, Vol. 2, May 1996, pp. 273-279.

[MSS02] Mungee, S., N. Surendran, and D. C. Schmidt, “The Design and Performance of

a CORBA Audio/Video Streaming Service,” Jan 1999, May 2002,
<http://www.cs.wustl.edu/~schmidt/research.html>.

[NOO02] NOOCEO, ezlinX, June 2002, <http://www.nooceo.com>.

[OMG00-1] OMG, “CORBAservices: Notification Service Specification,” OMG Document

formal/00-06-27, Object Management Group, Framingham, MA, June 2000.

[OMG00-2] OMG, “CORBAservices: A/V Streams,” OMG Document formal/00-01-03, Object

Management Group, Framingham, MA, Jan 2000.

 38

[OMG01] OMG, “CORBAservices: Event Service Specification,” OMG Document formal/01-03-
01, Object Management Group, Framingham, MA, Jan 2001.

[OMG02] Object Management Group, http://www.omg.org/news/about, June 2002.

[PHS96] Pyarali, I., T. Harrison, and D. Schmidt, “Design and Performance of an Object-

Oriented Framework for High-Speed Electronic Medical Imaging,” USENIX,
Vol. 9, No.3, 1996.

[Sca01] Scallan, T., A CORBA Primer, Segue Software, Feb. 2001.

[SCF96] Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson, “RFC 1889: RTP: A Transport

Protocol for Real-Time Applications,” January 1996, June 2002,
 <http://www.ietf.org/rfc/rfc1889.txt?number=1889>.

[SCW99] Stiller, B., C. Class, M. Waldvogel, G. Caronni, D. Bauer, B. Plattner, “A

Flexible Middleware for Multimedia Communication: Design, Implementation,
and Experience,” IEEE JSAC: Special Issue on Middleware, vol. 17, no. 9,
September 1999, pp. 1580-1598.

[Sun02-1] Sun Microsystems, “Supported Media Formats and Capture Devices”, June 2002,

<http://java.sun.com/products/java-media/jmf/2.1.1/formats.html>.

[Sun02-2] Sun Microsystems, Java Remote Method Invocation, June 2002,

<http://java.sun.com/products/jdk/rmi/index.html>.

[Sun02-3] Sun Microsystems, Java Web Start, June 2002,

<http://java.sun.com/products/javawebstart/index.html>.

[Sun02-4] Sun Microsystems, Java Media Framework, June 2002,

<http://java.sun.com/products/java-media/jmf/index.html>.

[Sun02-5] Sun Microsystems, “Java Remote Method Invocation – Distributed Computing

for Java,” White Paper, June 2002,
<http://java.sun.com/marketing/collateral/javarmi.html>.

[Sun99] Sun Microsystems, JMF 2.0 API Guide, “Working with Real-Time Media Streams,”

November 1999, June 2002,
<http://java.sun.com/products/java-media/jmf/2.1.1/guide/RTPRealTime.html>.

[TS02] Tanenbaum, A. and M. Steen, Distributed Systems: Principles and Paradigms,

Prentice Hall, 2002, pp. 504-505.

[Wil02] J. R. Wilcox, Videoconferencing and Interactive Media: the Whole Picture, Telecom

Books, 2000, p. 169.

[WHZ01] Wu, D., Y. T. Hou, W. Zhu, Y. Zhang, J. Peha, “Streaming Video over the

Internet: Approaches and Directions,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 11, No. 3, March. 2001, pp. 282-300.

[ZG01] Zhu, W. and N. D. Georganas, “JQoS: Design and Implementation of a QoS-

based Internet Videoconferencing System using the Java Media Framework
(JMF)”, 2001, June 2002,
<http://www.mcrlab.uottawa.ca/papers/CCECE2001.pdf>.

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Overview of Technology
	CORBA
	Video Streaming
	Java Media Framework

	Architecture of System
	Media Server
	Registration Object
	MediaStore Object

	Cam Processor
	Cam Controller
	Dynamic View Updating of Media Archive Library
	ROWC JMF Architecture

	Related Work
	DSS Surveillance System Implementation
	ezlinX Surveillance System

	Future System Enhancements
	QoS Provision
	Multiple Access of Cam Processor
	Media Server Improvements

	Conclusion
	Appendix
	References

