
A Framework for Describing Web Repositories

Frank McCown
Department of Computer Science

Harding University
Searcy, AR, 72149

fmccown@harding.edu

Michael L. Nelson
Department of Computer Science

Old Dominion University
Norfolk, VA, 23529

mln@cs.odu.edu

ABSTRACT
In prior work we have demonstrated that search engine caches
and archiving projects like the Internet Archive’s Wayback
Machine can be used to “lazily preserve” websites and re-
construct them when they are lost. We use the term “web
repositories” for collections of automatically refreshed and
migrated content, and collectively we refer to these reposi-
tories as the “web infrastructure”. In this paper we present
a framework for describing web repositories and the status
of web resources in them. This includes an abstract API for
web repository interaction, the concepts of deep vs. flat and
light/dark/grey repositories and terminology for describing
the recoverability of a web resource. Our API may serve as
a foundation for future web repository interfaces.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: [Digital Li-
braries]

General Terms
Standardization, Design

Keywords
Preservation, Web Repositories, Web Resources

1. INTRODUCTION
As more of the activities of our daily lives are represented

on the Web, the associated curatorial and preservation chal-
lenges continue to increase. Conventional web preservation
projects and techniques require a significant investment of
time, money and effort and are thus applicable only to col-
lections of known value. The limited scope of such projects
may leave a number of potentially important web collec-
tions unprotected. For these unprotected collections, lazy
preservation can provide a broad preservation service with
no cost to individual content producers [8]. Lazy preser-
vation makes use of the Web Infrastructure (WI). The WI

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’09, June 15–19, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-322-8/09/06 ...$5.00.

refreshes and migrates web content in bulk as side-effects of
its user-services, and these results can be mined as a useful,
but passive preservation service. The WI includes search
engine companies (e.g., Google, Yahoo, Live Search), non-
profit companies (e.g., Internet Archive’s “Wayback Ma-
chine”), personal archiving services (e.g., Hanzo:Web, Furl)
and large-scale academic projects (e.g., CiteSeer, NSDL Per-
sistent Archive). These repositories of web resources (or
web repositories) form the backbone of the WI. In prior
work we have investigated the nature of lost websites and
how they can be reconstructed from the WI [7, 10].

Despite the importance of these web repositories, existing
frameworks such as OAIS [4] lack the terminology for de-
scribing these repositories, their functionality and how web
resources move through the WI. To this end we present:
an abstract API for describing interaction with the WI; the
concepts of deep vs. flat and light, dark and grey web repos-
itories; and states of recoverability (vulnerable, replicated,
endangered) of a web resource in the WI.

2. WI LIMITATIONS
The WI relies primarily on web crawling to refresh and

migrate web resources. But web crawling is limited to the
surface web, the portion of the Web that is connected with
hyperlinks. Therefore pages that are returned in response to
a query, hidden behind JavaScript, Flash and CAPTCHAs,
and pages that are not connected to others are usually in-
accessible to the WI. Additionally, search engines and web
archives respect the robots exclusion protocol and will not
store web pages that use noarchive meta tags.

The search engine’s goal of providing information to users
may sometimes conflict with preservation goals. Search en-
gines often avoid crawling or indexing duplicate content [13]
or content determined to be spam [6]. They may not crawl
deeply into a website since such pages may not be useful to
search engine users [2]. Furthermore, their cache replace-
ment policies are proprietary and subject to change without
notice. In previous work, we have measured resources stay-
ing in search engine caches for 10 to 103 days [11].

Web archives face many of the same technical challenges
as search engines when crawling the Web, but they are less
likely to avoid duplicate content, spam or any particular re-
source format. Because the archive’s goal is to preserve the
Web as it was found, web archives are useful when recon-
structing lost websites. Unfortunately, web archives may not
have the same amount of resources (human and technical)
available as commercial search engines, and their coverage
of the Web may be somewhat limited.

3. WEB REPOSITORY TYPES
Web repositories are members of the WI that crawl and

store a sizeable portion of the Web and provide URI gran-
ularity to access their stored resources. Web repositories
are generally accessible to automated queries through the
HTTP protocol, using direct GET queries or an API, web
service, or any other method that can be automated.

Web repositories may be characterized by the depth of
their holdings. Search engine caches like Google’s are repos-
itories that store only the latest resource crawled; when a
resource is re-crawled, the new resource replaces the older
version in the repository. The depth d of such reposito-
ries is one since only one copy of a resource is maintained.
Search engine caches are thus examples of flat reposito-
ries (d = 1). A deep repository (d > 1) maintains older
versions of resources; it stores a datestamp along with each
version of the resource with the same URI. The Internet
Archive (IA) (with d = ∞) is an example of a deep reposi-
tory.

Web repositories may also be categorized by the access
granted to their holdings [14]. Borrowing from conventional
archiving terminology, dark repositories do not provide
public access to their holdings. Some repositories are made
dark due to legal restrictions (e.g., national web archives) or
because they are merely serving as a fail-safe in case the orig-
inal resource is no longer accessible. Light repositories,
however, place minimal access controls on their holdings.
Search engine caches and IA are examples of light reposi-
tories. In some cases IA holdings may be considered dark
since IA will not allow public access to an archived resource
when the website from which the resource was obtained con-
tains a robots.txt entry blocking access to the item. Grey
repositories are limited to a small number of individuals,
like Cornell’s Yesternet [1] which is limited to researchers.

Recent overlap studies have shown that Google, Live Search
(previously MSN Search) and Yahoo have indexed signifi-
cantly different portions of the Web [3]. All three search en-
gines make their indexed pages available from the “Cached”
link (or “View as HTML” for other document types) pro-
vided next to each search result. These cached resources can
be used for recovering lost pages if caught in time.

The Internet Archive is currently the world’s largest pub-
licly accessible web archive. Although there are several large
national web archives in existence [5], none are focused on
saving the entire Web. An overlap analysis of the Internet
Archive’s holdings indicates there are numerous resources
found in search engines caches that are not found in the
Internet Archive [7].

The Internet Archive strives to maintain an accurate snap-
shot of the Web as it existed when crawled. Therefore they
archive each resource in the same format in which it was
crawled. Search engines have traditionally been HTML-
centric, but as the amount of non-HTML resources has grown,
so has their ability to index and cache these types of re-
sources. When adding PDF, PostScript and Microsoft Of-
fice resources to their cache, the search engines create HTML
versions of the resources which are stripped of all images. In
most cases it is not possible to recreate the canonical version
of the document from the HTML version.

The search engines have separate search interfaces for
their images, and they keep only a thumbnail version of
the images they cache due to copyright law [12]. As shown
in Table 1, most resources are not stored in their canonical

Table 1: Web repository-supported data types as of
July 10, 2007.

Type Google Yahoo Live IA

HTML C C C C
Plain text M M M C
GIF, PNG, JPG M M M C
JavaScript M M C
MS Excel M ∼S M C
MS PowerPoint M M M C
MS Word M M M C
PDF M M M C
PostScript M ∼S C
Flash ∼S C
XML C ∼S C

C = Canonical version is stored
M = Modified version is stored (thumbnails or conversions)
∼S = Indexed but stored version is not accessible

format in the search engine caches. In some cases like Flash,
text from the resource may be indexed, but the binary re-
source is not accessible from the repository. Only HTML
appears to be stored in its canonical format across all four
repositories.

There are many other resource types not mentioned in
Table 1 that may be found on the Web: binary programs,
video, audio and archive files. While the IA attempts to pre-
serve these resource types, search engines are generally not
interested in them since there is little or no textual content
that can be indexed.

4. ABSTRACT API
In this section we introduce an abstract API for accessing

cached and archived resources in the WI and describe which
methods are supported by the major web repositories. A
web repository must support, at a minimum, the ability to
handle the query, “What resource r do you have stored for
the URI u?” where u is the resource’s URI when it was
obtained by the repository on the Web:

r ← getResource(u) (1)

The repository will respond to this query with the re-
source in the same format (canonical format) in which it
was crawled from the Web or in some altered format, such
as a thumbnail version of an image. If the resource has not
been stored, the repository will respond with some negative
response.

The format of the resource may be supplied as meta-
data with the resource, or it may be inferred from the URI,
its usage in the source HTML page or the repository from
which the resource is obtained. For example, if Google were
queried for the resource at http://foo.org/hello.gif, it
could be inferred that the resource is an image because of the
URI’s .gif ending or because it was referenced in an
tag. Since Google Images is known only to store thumbnail
images, it can additionally be inferred that the resource is
not in its canonical format. Had the resource been obtained
from IA, it could be assumed the image was in its canonical
format.

Deep repositories should allow resources to be obtained

Table 2: Implementation summary of web-repository interfaces.
Queries IA Google Live Yahoo

getResource X X X X
getResourceList X N/A N/A N/A

getCrawlDate X Limited to HTML Images not supported
Last modification date,
images not supported

getAllUris X First 1000 results only First 1000 results only First 1000 results only

using a URI u and the datestamp ds, the day on which the
resource was crawled, to distinguish among multiple versions
of the same resource:

r ← getResource(u, ds) (2)

The repository will only respond with the resource at URI
u that was crawled on date ds. To obtain a list of available
datestamps that are acceptable, the repository should ide-
ally support a query which returns the stored resources for
the given URI u:

D ← getResourceList(u) (3)

where D is the set of all datestamps stored in the repository
for the resource.

Flat repositories should ideally provide the date the re-
turned resource was crawled, perhaps as metadata in r from
getResource, or by supporting such a query:

d← getCrawlDate(u) (4)

Having a datestamp for each resource allows a web-repository
crawler to chose between multiple resources from multiple
repositories that have been crawled at different times, like,
for example, when wanting to select the most up-to-date re-
source. It also allows the crawler to reject resources that are
not from a particular time frame.

An additional query type which allows for more efficient
crawling is, “What resources R do you have stored from the
site s?”:

R← getAllUris(s) (5)

The returned value R is a set of all URIs and datestamps
stored in the repository {(u1, d1), (u2, d2), ..., (un, dn)}. This
type of query, called a lister query, can greatly decrease the
number of queries that a repository must handle since it can
be asked for only those resources it is known to contain. Ad-
ditionally, deep repositories may provide an enhanced query
to limit the returned resources to a particular date range dr:

U ← getAllUris(s, dr) (6)

5. IMPLEMENTING THE API
Each of the repositories implement the abstract API in

different ways and with varying completeness. A summary
of the web-repository interfaces supported by the four web
repositories is given in Table 2.

The three search engines implement the repository inter-
faces in a similar manner with a few significant differences.
All three search engines support getAllUris, getCrawlDate

and getResource queries. To perform getAllUris (lister
queries), the query parameter “site:” is used. For example,
to retrieve all URIs for the website www.cs.odu.edu from
Google, the query site:www.cs.odu.edu is used. All three
search engines will return only the first 1000 results, so lister
queries are of limited use for large websites.

The getCrawlDate query is not supported directly by Google
and Live, but it is indirectly supported by examining the
metadata returned from the getResource query. Unfortu-
nately, Google does not make the cached date available for
non-HTML resources, so getCrawlDate is only partially sup-
ported by Google.

Yahoo does not place the crawled date in their cached
page’s heading; it must be retrieved using their API. The
date returned by Yahoo’s API is not the date the resource
was crawled but instead the date they last noticed it had
changed (the ModificationDate). Yahoo does not specify
how they measure change, but it is likely based on the re-
source’s Last Modified HTTP header.

In order to access images from the search engines, a dif-
ferent but similar procedure is involved. The getAllUris

query is invoked against Google Images (or images API for
Live and Yahoo). Again, only the first 1000 results can be
obtained. The getResource query is implemented by find-
ing the URI of the thumbnail image and accessing it directly.
Note that no datestamp is available for images from any of
the search engines.

The interface queries getAllUris, getResourceList and
getResource are all supported by IA. To perform getAllUris,
an HTTP request is made in the form: http://web.archive.
org/web/*sr_0nr_20/http://www.cs.odu.edu/*. IA will
respond to this query with a listing of all URIs it has stored
that match the given URI prefix. IA does not limit the
number of results returned, so paging through all resources
stored is possible. The getAllUris query with date range is
not completely supported by IA, but a date range of one
year (e.g., limiting to 2006 is http://web.archive.org/

web/2006*/http://www.cs.odu.edu/) or one month (e.g.,
limiting to January 2006 is http://web.archive.org/web/

200601*/http://www.cs.odu.edu/) is supported. IA also
supports the getResourceList query by returning a page
listing all the stored versions of a page.

The getResource query is implemented by directly ac-
cessing any of the stored resources. For example, the page
stored on January 24, 2005, can be accessed at http://web.
archive.org/web/20050124084644/http://www.cs.odu.edu/.
Note the date (ds) in YYYYMMDD format (20050124) em-
bedded in the URI.

6. RESOURCE RECOVERABILITY
If a resource is discovered and archived by a web archive

(deep repository), it will likely remain accessible from the
WI even when the resource disappears from the Web. How-

td ta

tr

tp
TTLc SE cache tm

TTLws

t0

 vulnerable replicated endangered unrecoverable

Web server

Figure 1: Timeline of search engine resource acqui-
sition and release.

ever, if a resource is discovered and cached by a search engine
(flat repository) and then disappears from the Web, it will
only have a limited time of protection before it is purged
from the search engine’s cache.

Figure 1 illustrates the life span of a web resource from
when it is first made available on a web server to when it
leaves a search engine cache. A web resource’s time-to-live
on the web server (TTLws) is defined as the number of days
from when the resource is first made accessible on the server
(t0) to when it is removed (tr). The period beginning when
the resource is accessible from a search engine’s cache (ta)
to when it is finally purged (tp) defines a resource’s time-
to-live in the search engine cache (TTLc). The following
classifications are used to describe the resource’s availability:

• Vulnerable - A new resource which has not yet been
discovered by a search engine (td) and made available
in the search engine cache (t0 to ta).

• Replicated - A resource which remains accessible on
the web server and has also been cached by a search
engine (ta to tr).

• Endangered - A resource which is no longer accessible
on the web server but still remains cached (tr to tp).

• Unrecoverable - A resource which has been discov-
ered to be no longer accessible on the web server (tm)
and has been evicted from cache (tp).

A resource is recoverable if it is currently cached (i.e., is
replicated or endangered). Ideally, a cached resource will
always be accessible from the cache at any given time but
this is not always true [9]. Therefore, a recoverable resource
can only be recovered during the TTLc period with a prob-
ability of Pr, the observed number of days that a resource
is retrievable from the cache divided by TTLc.

It should be noted that the TTLws and TTLc values of
a resource may not overlap. A search engine that is slow
in updating its cache, perhaps because it obtains crawling
data from a third party, may experience late caching where
tr < ta. This is particularly true for a web archive like IA
that makes resources available from their archive months
after they have been crawled.

7. CONCLUSIONS
We have presented a framework for discussing web repos-

itories in the web infrastructure. We distinguish between
deep repositories (those that store multiple timestamped
versions of a resource) and those that are flat (storing only
the most recent version). We also borrow from conventional

archiving the terms of dark and light repositories, and in-
troduce the term grey repository for those that are partially
accessible. We have introduced the concepts of recoverable
web resources being vulnerable (accessible but not cached),
replicated (accessible and cached) and endangered (not ac-
cessible but still cached). Finally, we have presented an ab-
stract API for discovering resources in web repositories and
have discussed to what extent four repositories implement
that API. We hope this abstract API can be a foundation for
future work in building a standardized API for web reposi-
tories.

8. REFERENCES
[1] W. Y. Arms, S. Aya, P. Dmitriev, B. J. Kot,

R. Mitchell, and L. Walle. Building a research library
for the history of the web. In Proceedings of JCDL
2006, pages 95–102, 2006.

[2] R. Baeza-Yates and C. Castillo. Crawling the infinite
web: five levels are enough. In Proceedings WAW
2004, pages 156–167, 2004.

[3] Z. Bar-Yossef and M. Gurevich. Random sampling
from a search engine’s index. In Proceedings of WWW
’06, pages 367–376, 2006.

[4] Consultative Committee for Space Data Systems.
Reference model for an open archival information
system (OAIS). Technical report, 2002.

[5] M. Day. Preserving the fabric of our lives: A survey of
web preservation initiatives. Research Advanced
Technol. Digital Libraries, pages 461–472, 2003.

[6] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: using statistical analysis to
locate spam web pages. In Proceedings of WebDB ’04,
pages 1–6, 2004.

[7] C. Marshall, F. McCown, and M. L. Nelson.
Evaluating personal archiving strategies for
Internet-based information. In Proceedings of IS&T
Archiving 2007, pages 151–156, May 2007.

[8] F. McCown. Lazy Preservation: Reconstructing
Websites from the Web Infrastructure. PhD thesis,
Old Dominion University Department of Computer
Science, 2007.

[9] F. McCown and M. L. Nelson. Characterization of
search engine caches. In Proceedings of IS&T
Archiving 2007, pages 48–52, May 2007.

[10] F. McCown and M. L. Nelson. Usage analysis of a
public website reconstruction tool. In Proceedings of
JCDL ’08, pages 371–374, 2008.

[11] F. McCown, J. A. Smith, M. L. Nelson, and J. Bollen.
Lazy preservation: Reconstructing websites by
crawling the crawlers. In Proceedings of WIDM ’06,
pages 67–74, 2006.

[12] S. Olsen. Court backs thumbnail image linking. CNET
News.com, July 2003.
http://news.com.com/2100-1025_3-1023629.html.

[13] N. Shivakumar and H. Garcia-Molina. Finding
near-replicas of documents and servers on the web. In
Proceedings of WebDB ’98, pages 204–212, 1999.

[14] S. E. Thomas and C. A. Kroch. Project Harvest: A
report of the planning grant for the design of a
subject-based electronic journal repository, Sep 2002.
http://diglib.org/preserve/cornellfinal.html.

