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ABSTRACT

LAZY PRESERVATION: RECONSTRUCTING WEBSITES FROM

THE WEB INFRASTRUCTURE

Frank McCown

Old Dominion University, 2007

Director: Dr. Michael L. Nelson

Backup or preservation of websites is often not considered until after a catastrophic event has oc-

curred. In the face of complete website loss, webmasters or concerned third parties have attempted to

recover some of their websites from the Internet Archive. Still others have sought to retrieve missing

resources from the caches of commercial search engines. Inspired by these post hoc reconstruction

attempts, this dissertation introduces the concept of lazy preservation– digital preservation per-

formed as a result of the normal operations of the Web Infrastructure (web archives, search engines

and caches). First, the Web Infrastructure (WI) is characterized by its preservation capacity and

behavior. Methods for reconstructing websites from the WI are then investigated, and a new type

of crawler is introduced: the web-repository crawler. Several experiments are used to measure and

evaluate the effectiveness of lazy preservation for a variety of websites, and various web-repository

crawler strategies are introduced and evaluated. The implementation of the web-repository crawler

Warrick is presented, and real usage data from the public is analyzed. Finally, a novel technique for

recovering the generative functionality (i.e., CGI programs, databases, etc.) of websites is presented,

and its effectiveness is demonstrated by recovering an entire Eprints digital library from the WI.
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CHAPTER I

INTRODUCTION

1 MOTIVATION

“My old web hosting company lost my site in its entirety (duh!) when a hard drive died

on them. Needless to say that I was peeved, but I do notice that it is available to browse

on the wayback machine... Does anyone have any ideas if I can download my full site?”

- A request for help at archive.org [147]

As the most popular publishing medium today, the Web has unleashed exponential growth of

mankind’s creative output, and along with it, an abundance of curatorial and preservation chal-

lenges1. Preserving this “global mess of previously unimagined proportions” [33] is a considerable

challenge for the current generation, much less for future generations. Individuals do not recognize

their personal responsibility for preserving personal data like websites: a 2006 survey indicates only

57% of individuals who store personal data on their computers ever backup their data [31], and

even experts who work on backup storage techniques admit they do not backup their personal files

[44]. Webmasters who rely on ISPs and web hosting companies to preserve their websites are often

surprised and disappointed to discover that these organizations are not immune to viruses, hackers,

bankruptcy and run-ins with the law [73, 105, 114]. Just one year ago, members of the Internet

Archive’s web team recovered over 200 websites for individuals who had lost their websites and did

not have a functional backup [119].

Even if a great deal of personal care and energy are expended to properly ensure the availability of

the individual’s or organization’s website, the website may still become defunct once it is no longer

needed, financial pressures dictate ending the website or the maintainer dies [105]. In this case,

interested third parties may have few means available to resurrect the website since they typically

do not have access to backups.

To combat the ephemeral nature of the Web, preservationists may employ refreshing (copying

of data to different systems), migration (transferring of data to newer system environments [171])

and emulation (replicating the functionality of an obsolete system [149]) to protect collections of

known importance. Such strategies often involve a large institutional investment of time and money.

For example, the Library of Congress recently funded a $13.9M project to preserve “digital content

relating to important people, events and movements that have had a major impact on the nation’s

history [92].” Not only do these types of in vitro preservation projects have a limited scope and

require significant effort within a controlled environment to be successful, it is often difficult to

determine in advance what might be important in the future.

Other collections of unknown value may also be preserved although in a somewhat random

and haphazard manner by the “living web.” For example, consider a 1994 NASA report (Figure

1) that has been refreshed and migrated to other formats (PDF, PNG, HTML) from its original

1This dissertation follows the style of the International Journal on Digital Libraries.
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3 remote & 4 cached versions

12 versions found 

3 versions (2 nasa.gov & 1 mpg.de)
2 cached PDF versions 

FIG. 1: Refreshing and migrating occurring in the living Web.

compressed PostScript. Only one of the links points to the original 1994 location. This type of

in vivo preservation is not guaranteed by any single institution or archive; it is the result of the

distributed efforts of users, web administrators and commercial services.

A major contributor to in vivo preservation is the Web Infrastructure (WI), the collection of

commercial web search engines (e.g., Google, Yahoo, Live Search, etc.), personal web archives

(e.g., Furl.net and Hanzo:Web), web archives operated by non-profit companies (e.g., the Internet

Archive’s Wayback Machine), and research projects (e.g., CiteSeer and NSDL). The WI supports

refreshing and migrating of web resources, often as side-effects of their intended purposes. Some

members of the WI are in competition with each other (such as Google, Live Search and Yahoo)

to increase their holdings and will continue to improve the utility of the WI. Although members of

the WI may come and go, the combined efforts of the WI can ensure the wide-spread and long-term

preservation of many web resources, some of which may not have recognized value today but may

in the future.

The WI can be utilized as a lazy preservation service for capturing entire websites; lost websites

can be reconstructed from the WI on-demand by the public. Like RAID (Redundant Arrays of

Inexpensive Disks) systems, where reliable storage is built on top of individually unreliable disks,

the individual WI elements are also unreliable, at least with respect to any given resource. However,
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unlike RAIDs, the WI elements cannot be directly controlled. When a website is lost and backups

are unavailable, lazy preservation may offer the only means for recovery. For example, when a

website is hacked or an ISP goes out of business, an owner without any backups may reconstruct

their website from the WI and make it available once again. Or when a popular website is no longer

available because the owner has passed away, an interested third party can reconstruct the website

and use the recovered information for their own use, or they may make the resource available once

again to the community. In the face of complete loss, the WI may provide hope and relief, even if

only a portion of what was lost can be found.

2 OBJECTIVE

The objective of this dissertation is to demonstrate the feasibility of using the WI as a preservation

service and to evaluate how effectively this previously unexplored service can be utilized for recon-

structing lost websites. To meet this objective, this dissertation focuses on answering these research

questions:

• What interfaces are necessary for a member of the WI to be used in website reconstruction?

(Chapter III)

• What types of resources are typically stored in the WI search engine caches, and how up-to-date

are the caches? (Chapter IV)

• How successful is the WI at preserving short-lived web content? (Chapter IV)

• How much overlap is there with what is found in search engine caches and the Internet Archive?

(Chapter IV)

• How does a web-repository crawler work, and how can it reconstruct a lost website from the WI?

(Chapters V and VI)

• What types of websites do people lose, and how successful have they been recovering them from

the WI? (Chapter VI)

• How completely can websites be reconstructed from the WI? (Chapter VII)

• What website attributes contribute to the success of website reconstruction? (Chapter VII)

• Which members of the WI are the most helpful for website reconstruction? (Chapters VI and

VII)

• What methods can be used to recover the server-side components of websites from the WI?

(Chapter VIII)

3 APPROACH

A number of experiments have been designed to answer the posed research questions.
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Characterizing the WI: To evaluate the WI as a preservation resource, an experiment was de-

signed to sample from members of the WI (search engine caches) and analyze the content

found cached and missing from cache. An overlap analysis was performed examining sampled

content with the holdings of the Internet Archive. A second experiment observed WI caching

behavior by analyzing crawl logs and performing targeted searches on three search engines as

they discovered and cached four decaying web collections.

Web-repository crawling: The concept of crawling the WI is introduced, and the architecture for

a web-repository crawler is presented. An implementation of a web-repository crawler called

Warrick is discussed, and the algorithm used by Warrick to reconstruct websites from four web

repositories (Internet Archive, Google, Live Search and Yahoo) is provided.

Reconstruction from the WI: The effectiveness of reconstructing websites from the WI is eval-

uated using three controlled experiments on a variety of websites. The first experiment used

Warrick to reconstruct 24 websites using single repositories by themselves and all four repos-

itories together. In the second experiment, the same 24 websites were reconstructed using

three different crawling policies which were evaluated for effectiveness. The final experiment

reconstructed 300 randomly selected websites over a period of three months, and website char-

acteristics were analyzed to discover which attributes influenced reconstruction success.

Reconstructing website server components: Several methods are proposed for recovering the

server components of a website from the WI. The feasibility of the approaches were demon-

strated by creating a digital library (DL) using Eprints software [53]; the pages of the DL were

modified to store the server components using erasure codes. The DL was exposed to the WI

over a period of four months and then removed from the Web to measure how long it could

be reconstructed after it was lost.

4 ORGANIZATION

This dissertation is organized as follows:

Chapter 2: Preserving the Web – The Web preservation problem is introduced (digital preser-

vation concepts, link rot on the Web and in academic literature), and various strategies for

combating the problem are discussed (web archiving, backup mechanisms, search engine caches,

etc.).

Chapter 3: Lazy Preservation and the Web Infrastructure – The lazy preservation

paradigm is introduced along with various members of the Web Infrastructure. Limitations of

lazy preservation are discussed, various web repositories (individual members of the WI) are

introduced, and methods to mine content from the various web repositories are presented.

Chapter 4: Characterizing the Web Infrastructure – The Web Infrastructure is character-

ized by observing its behavior to discover and preserve four decaying web collections. Its

holdings are measured in a second experiment.
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Chapter 5: Web-Repository Crawling – The concept of a web-repository crawler is introduced

and its architecture is discussed in detail. Lister queries, crawling policies and URL canoni-

calization issues are discussed.

Chapter 6: Warrick, a Web-Repository Crawler – Warrick, the first web-repository crawler,

is introduced and its algorithm presented. A queueing system for Warrick called Brass is also

discussed, and usage data from the public is provided.

Chapter 7: Evaluating Lazy Preservation - The findings of three reconstruction experiments

using Warrick are presented. The first examines the aggregate performance of the WI versus

using individual members, and the second experiment examines the efficiency of three crawling

policies. The final experiment gauges what might be recovered from the WI if the “typical”

website were lost today.

Chapter 8: Recovering a Website’s Server Components – Several methods for recovering

the generative components of a website are discussed. One promising method for injecting

the server components into the WI using erasure codes is implemented, and experimental

results are shared.

Chapter 9: Conclusions and Future Work – The findings are summarized, the contributions

of this dissertation are listed and directions for future work are presented.
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CHAPTER II

PRESERVING THE WEB

As Jeff Rothenberg aptly put it, “Digital information lasts forever or five years, whichever comes

first” [148]. In regards to the Web, it might be said, “A web page lasts forever or five months,

whichever comes first.” Web pages that are here today may not be here tomorrow, or at least not at

the same location. This phenomena is known as link rot or web decay [90], and although a number

of solutions have been offered to combat link rot, today’s Web user is still very familiar with the

“404 Not Found” message.

In this chapter, the groundwork is laid for defining the scope of link rot and the various solutions

(and limitations) for combatting it. Digital preservation concepts are defined, and a number of

systems and mechanisms are presented which could be used to recover missing web content. Web

crawling is also discussed as it pertains to web archiving and search engine caching.

1 LINK ROT

Link rot continues to be a problem for several reasons:

• The Web relies on each web resource to be accessible from a URL, yet URLs are usually tied

directly to the website’s domain name, directory structure and sometimes even the operating

system (http://foo.edu/~joe/ on a Linux server may become http://foo.edu/joe/ if moved

to a Windows server). Any changes to the website’s infrastructure could result in link rot.

• Almost anyone with Web access can easily create a web page, yet there is no requirement that

the creator or any other entity maintain access to the page.

• Although a URL may continually be accessible over time, the content it points to may change.

There is no mechanism in place to alert a user what has changed about a web page or when the

change occurred.

• There is usually no timestamp associated with a link or URL. Although a link to a URL may be

valid when it is initially created, it may be difficult or impossible to later verify when the URL

was created and therefore what content was actually being pointed to.

• Domain names expire, institutions disband, website owners pass away, and pages are abandoned

out of disinterest. Content may be removed from the Web because the information is no longer

relevant or correct, it is embarrassing to the owner or other third parties or it violates the law.

• Mechanisms to redirect web users to the new location of a web page are often difficult to setup or

maintain and are usually not automated.

Research in the area of link rot has mainly focused on measuring the disappearance of specific

resources, especially in reference to academic citations, and finding methods to combat link rot.

Each of these will be discussed in turn.
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1.1 Web Decay

The mortality rates for general web pages is high. Koehler [88, 89] estimates the half-life of a website

and web page to be 2.9 and 1.6 years, respectively. Brewster Kahle, founder of the Internet Archive,

estimates that web pages have an average life expectancy of only 100 days [174], and a 2003 study

found that two percent of the Web disappeared from its current location every week [57].

Link rot has had a significantly negative impact on scholarly literature which regularly cites web

resources. In one of the earliest URL persistence studies of scholarly literature [77], one-third of 47

URLs from scholarly e-journals (published from 1993 to 1995) were inaccessible in 1995. Another

study [103] monitored 515 URLs that referenced scientific content or education from 2000-2001

and found 16.5% of the URLs became inaccessible or had their content changed. Other studies have

shown pervasive link rot in law review articles [150], MEDLINE abstracts [175], digital library articles

[111] and World Wide Web training and education articles [151]. Computer science literature is not

immune: a study examining computer science articles obtained from the CiteSeer ResearchIndex

database [63] found the percentage of invalid referenced URLs increased from 23% from articles

written in 1999 to 53% from 1994 articles [96]. Another study of articles from the ACM and

IEEE Computer Society on-line digital libraries showed that referenced URLs had a half-life of

approximately four years from the publication date [156].

Even resources protected within the confines of a digital library are not always accessible. A

study that tested 1000 digital objects (using URLs) from a collection of digital libraries found a 3%

loss (after manual searching) in URL accessibility during 2000-2001 [125].

1.2 Preventing Link Rot

Because link rot is such a pervasive problem, a number of solutions have been offered. The HTTP

protocol [58] provides built-in mechanisms for relocating pages that move by manually configuring

a web server to return a 3xx status code and a pointer to the new location of the page. This

functionality is frequently not available to those who do not have access to web server configuration

files or who no longer own the domain name of the old URLs. It also does not help locate pages

that are no longer accessible on the Web.

A proactive solution to the problem is to avoid creating URLs that will likely become inaccessible

later. Berners-Lee [22] has developed popular guidelines for creating durable URLs. Most blogging

software today encapsulates some of these best-practices when creating durable URLs (permalinks)

to blog posts, and in fact much of the popularity and success of the Blogosphere can be attributed

to the wide-spread use of permalinks [162].

A number of indirection mechanisms like Persistent URLs (PURLs) [152], handles [93], and

Digital Object Identifiers (DOIs) [137] have also been developed to allow creation of permanent

URLs. Unfortunately, adoption of these mechanisms has largely been limited to digital libraries and

archives. This is likely due to the fact that extra software may be required on the client or server,

and that most webmasters do not have the motivation or perceive the personal benefit of using such

services.

Phelps and Wilensky [138] proposed the use of robust hyperlinks and search engines to find

resources after they have gone missing. Robust hyperlinks are URLs with a lexical signature (LS)
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of 5 words appended onto the end that attempt to capture the uniqueness of the resource. When

the resource goes missing, the LS can be submitted to search engines to find the new location of the

resource. The use of lexical signatures has not been widely adopted for several reasons: the extra

work required of the webmaster to generate them for every link, the problem of having to re-generate

the signatures when the documents change, and the lack of sufficient motivation for the webmaster

to produce the signatures in the first place. In many cases, a broken link is a problem for someone

else, not the link’s owner.

Another system for automatically discovering the new location of a missing URL is called Opal

[75, 76]. Opal uses lexical signatures, search engines and web archives to discover similar documents

at other locations and leverages the wisdom of crowds when the new location cannot be automatically

located. Opal is in an early state of development and has not been publicly deployed. A less advanced

service called Pagefactor [135] maintains a user-contributed database of inaccessible URLs and their

new locations; a bookmarklet can be added to a browser to quickly check if a URL has been registered

in the Pagefactor database.

All of these mechanisms require individuals to do some amount of work to prevent link rot. For

example, a web administrator could create a redirection rule to ensure a request for http://foo.

edu/~joe/ redirects to http://foo.edu/joe/, but unless the administrator is properly motivated

to create the rule (a directive from a boss or financial incentive), it will likely not be created.

Additionally, the administrator may lack the knowledge to create redirection rules or simply be

unaware of the consequences of changing a website’s URLs.

2 PRESERVING THE WEB

All the mechanisms presented in Section 1.2 are an attempt to preserve mainly the current web

graph. But none of the mechanisms guarantee long-term access to web content, nor do they account

for changes in content over time. In the face of potential loss, archivists may take a variety of steps

to ensure items deemed ‘important’ are not lost over time.

2.1 Digital Preservation Strategies

A number of strategies have been suggested to ensure the long-term preservation of digital docu-

ments. In practice, the following three methods have been widely deployed:

• Refreshing – Copying data to different media or systems [171]. This strategy preserves the bit

stream composing the object and is necessary when the underlying media or system is soon to

become unreadable or obsolete.

• Migration – Transferring data to newer system environments [171]. This may include converting

the resource from one format to another, from one operating system to another or from one

programming language to another so the resource remains fully accessible and functional.

• Emulation – Replicating the functionality of an obsolete system [149]. Emulating an older system

which created or used the object ensures the object’s behavior and “look-and-feel” are preserved.
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All three of these methods are labor-intensive and expensive, requiring a commitment of institutional

resources to successfully implement on a large scale. Furthermore, a repository must ensure the

trustworthiness of its archival process [84] and maintain the provenance of its curated objects [64].

As data becomes increasingly “born digital” and individuals continue to amass communications,

photos, music and video in digital form, considerable effort must also be employed individually to

refresh and migrate personal data [104].

As will be discussed next, refreshing is the primary strategy employed to ensure the Web is

preserved– both institutions and individuals make copies of web pages and websites in case they

disappear. As the Web ages and older formats become obsolete, the need for migrating and emulating

older content is slowly emerging [146, 159].

2.2 Archiving the Web

Many initiatives have been undertaken to preserve snapshots of the Web for historians, researchers

and posterity. Due to its immense size, archiving the Web is very challenging from a technical

standpoint. Due to the diversity of content and variety of laws protecting work published online,

web archiving is also challenging from a legal standpoint. Day [48, 49] has outlined a number of

challenges to archiving the Web and lists several current initiatives.

The Internet Archive (IA), founded by Brewster Kahle, is the first large-scale attempt to create

an archive of the publicly accessible Web [85]. IA started archiving the Web in October 1996 [30];

they rely primarily on Alexa Internet for providing crawl data, supplemented with focused crawls

from their in-house web crawler Heretrix [120]. Because Alexa is a private company focusing on

popular websites, and because they do not disclose the inner workings of their crawler or crawling

policies, IA’s holdings are not complete, nor are they necessarily representative of the Web at large

[166]. The IA is mirrored at the Bibliotheca Alexandrina [25] which aids in protecting their large

archive from loss.

National libraries, national archives and a variety of institutions have also recognized the value

of preserving portions of the Web and have launched a number of programs to archive culturally

important websites (e.g., Sweden’s Kulturarw3 [10], France’s BnF [1], the UK’s UKWAC Archive

[14] and Australia’s PANDORA Archive [32]). Like the Internet Archive, most of these rely on web

crawling to fill their archives. Some may also require their citizens to deposit their works in their

archives (although enforcing such laws is problematic) [1, 72].

Social bookmarking and archiving services like Furl [61], Spurl.net [157] and Hanzo:Web [74]

have emerged that allow users to archive selected web resources which can be accessed from any

location at a later time. Services like WebCite [54] and StayBoyStay [158] allow users to archive

web pages so they can be cited without danger of being lost. And archive-on-demand subscription

services like Archive-It [7] have made it increasingly easy for individuals and institutions to archive

web material.

Some systems have been built to preserve a much smaller yet significant portion of the Web.

Having recognized that digital content from publishers’ websites periodically disappears from the

Web, LOCKSS [144] was created to archive selected publishers’ websites for library use. LOCKSS

is a peer-to-peer (P2P) system which performs focused crawls of a publisher’s website and archives
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the web content in a closed environment. When a user tries to access content that is no longer

available on the publisher’s website, LOCKSS will return the archived version instead. LOCKSS is

a dark archive– its holdings are not publicly accessible due to constraints that publishers place on

their content.

CiteSeer also preserves academic output; it is a project developed at the NEC Research Institute

to discover and index scientific and academic papers on the Web [63]. It migrates discovered docu-

ments to several file formats including PDF, PostScript and PNG and makes these files accessible

from their website. If the original document disappears from the Web, it will remain accessible from

CiteSeer.

Other systems have been developed that reside on a web server to aid in archiving web resources.

TTApache [52] is a transaction-time web server [51], implemented as an Apache module, which

performs automatic archiving of web pages on a per-request basis. Web pages must be requested

(by a user, robot or other mechanism) in order to be archived. TTApache maintains a document

version history for all requested documents and provides a URL query interface to view the archived

versions. iPROXY [142] is similar to TTApache in that it serves as an archiving service for web

pages, but it is not limited to a specific web server. iPROXY is a proxy server that archives web

pages as they are visited by a user, and it can also archive selected websites through crawling. A

URL query interface is used to access archived web pages. A similar approach using a proxy server

with a content management system for storing and accessing Web resources was proposed by [55],

but they did not provide many details of their prototype. The Apache module mod oai can produce

archival-ready resources for a website, but it relies on web archives to actually store the resources

[126].

2.3 Web Server Archiving

While web archives and web server add-ons focus on archiving the client-side representation of

web pages, none of them are capable of archiving the server components that generate dynamically-

produced websites. In the advent of a website’s loss, the generative functionality would be completely

lost unless a backup of the components were available. This is especially problematic for sites whose

pages cannot be crawled and are therefore unlikely to be archived by any of the systems mentioned

in Section 2.2.

To aid in the recovery of a website in the advent of a disk failure, the InfoMonitor archives the

files and server-side components of a website [42, 43]. It runs on a separate machine that periodically

scans web server’s filesystem and propagates any detected changes (like modified or deleted files) to

the archive.

Many backup systems provide similar protection for a web server although access to older versions

of files may not be present in all systems. Most operating systems come with backup software that

will automate backups to local disk drives [26], and there are numerous off-site backup solutions

available for a subscription fee. For example, Backup.com offers an automated backup solution

of 250 MB for $5 a month [11], and Amazon S3 offers $0.15 per GB a month with a $0.20 per

GB transfer rate [5]. Researchers have also proposed a number of methods (usually involving P2P

systems) to make backup simple and affordable for the masses (e.g., [44, 121]), but such systems are
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not yet in widespread use.

2.4 Search Engine Caching

Google was the first search engine to allow users access to the pages they indexed [133]. They

made these cached pages available for all HTML resources that they crawled. As other document

formats have become available on the Web (e.g., PDFs, Word documents, PostScript, etc.), Google

has converted these to HTML in order to index them. They have also made these HTML versions

available through a “View as HTML” link next to each resource. Many commercial search engines

now permit access to their cached resources.

Search engine caches are not intended necessarily to be used for preservation purposes; most

search engines will purge a resource from their cache as soon as they discover it is no longer available

on the Web [119]. Nevertheless, some individuals have used Google’s cache to find web pages that

have gone missing from the Web [24, 105, 114, 161].

Besides the work presented in this dissertation, little research has been performed examining

the caching behavior of commercial search engines. A notable exception is an experiment by

Lewandowski et al. [98] which measured the index freshness of Google, Yahoo and MSN by examin-

ing 38 cached web pages from German websites daily for six weeks. They found Google maintained

the freshest index with cached pages averaging 3.1 days in age. MSN was second with 3.5 days, and

Yahoo was last with 9.8 days. MSN was the most consistent at providing pages that were no older

than 20 days, but Google and Yahoo both had pages cached that were almost 2 months old.

3 WEB CRAWLING

3.1 Background

Web crawling is important to website preservation because web archives and search engines (the

thrust of this dissertation) primarily rely on web crawling to discover new resources and refresh

their holdings. Crawler limitations are thus directly related to the holdings of web archives and

search engines.

A web crawler is a tool which automates the collecting of websites [136]. A crawler is initially

given a seed URL. It makes an HTTP request for the resource, downloads it and examines it for

links to other resources it is interested in crawling. This process generally continues until there are

no more URLs left to discover.

In order to avoid overloading a web server, a crawler typically delays some amount of time

between requests and avoids crawling URLs that are marked off-limits using the robots exclusion

protocol [91]. These factors limit the ability to precisely capture a website at a specific moment in

time since some pages may be changing immediately before or after being crawled, and the crawler

is prohibited from crawling some pages. Additionally, crawlers may want to limit the depth to which

they crawl a website to avoid crawler traps, a set of URLs that cause a crawler to crawl indefinitely

[78].

Using a web crawler and a large number of seeds, a large portion of the surface web can be

discovered, but those websites not connected to larger sections of the Web will be missed [28].
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Keeping a web repository fresh is another challenge of web crawling. Because the Web is too large

to be crawled, a number of methods have been developed to crawl only those resources that are

popular (e.g., [38, 124]) or to schedule re-crawls based on resource change rates (e.g., [35, 128]).

3.2 Crawling the Deep Web

The deep web [21] or hidden web [60, 95] are those web-accessible resources that cannot be found

by crawling the surface web. It has been estimated that the deep web is several magnitudes larger

than the surface web [21]. The deep web is composed of several parts:

• Dynamic content – Pages that are returned in response to a query (e.g., in response to a form

submission) or in response to user interaction (e.g., AJAX-style web applications).

• Unlinked content – Pages that are not linked to by other pages or linked only through JavaScript,

Flash or form interfaces.

• Limited-access content – Pages that are protected by passwords or CAPTCHAs [4] or accessible

to only certain user agents, pages marked “off-limits” by the robots exclusion protocol [91] or

special crawler-protection tags like noindex, nofollow and noarchive.

• Contextual web – Pages whose content varies depending on the user agent, IP address range,

cookie contents or previous navigational sequences.

• Non-textual content – Resources which may not be crawled (especially by search engines)

because they are not of a format the repository wants to crawl.

Efforts to crawl the deep web have focused on performing queries on Web search interfaces

using human-assisted techniques [99, 100, 141] and automated methods [130]. Other methods like

the Sitemap Protocol and mod oai (discussed in the next section) can also be used to discover

deep web resources on a website. OAI-PMH can used to locate deep web resources held in OAI-

compliant repositories. In June 2005, McCown et al. [113] found 3.3M unique web resources that

were discovered using OAI-PMH and found that Yahoo had indexed 65% of the resources. Google

had indexed 44% and MSN only 7%, but almost a quarter of the resources (many deep web) were

not indexed by any of the three search engines. Yahoo’s success was primarily attributed to a deal

they had made in March 2004 [169] to obtain content harvested by OAIster [71], a service that uses

OAI-PMH to harvest academically oriented digital resources from various OAI repositories.

Other systems like DP9 and Errols have been developed to allow search engines to discover OAI

repository holdings through traditional web crawling. The DP9 gateway service harvests records

from OAI repositories in batches and converts them into web pages that search engines can then

crawl and index [101]. The Extensible Repository Resource Locators (Errols) for OAI Identifiers

project allows the creation of URLs that dynamically perform OAI-PMH queries against registered

OAI repositories and generates HTML pages suitable for Web crawling [180].

3.3 Crawling Alternatives

Recognizing the inefficiencies of conventional web crawling and the difficulty of finding deep web

resources, researchers have examined various alternative methods that would allow crawlers to more
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efficiently discover a web server’s resources. Brandman et al. [27] proposed that web servers export

metadata about their holdings, indicating which resources are available and when they have last

changed. Having access to such metadata allows crawlers to only access those resources that they

are interested in and those resources which have changed since the last visit. Nelson et al. [126, 127]

extended this idea by building an Apache module (mod oai) which exports web server metadata

using OAI-PMH.

The Sitemap Protocol [155], based on the ideas from [27], allows a website to provide a text

file listing the set of URLs available on the site, their change rates and their relative importance.

The file can be generated by hand or by automated methods. The Sitemap Protocol was initially

developed by Google in June 2005, but it has now been adopted by most commercial search engines

as a standard. Some search engines like Google and Yahoo have also added support for reading Real

Simple Syndication (RSS) and Atom feeds [179] and harvesting data from OAI-PMH requests [172].

Other researchers have proposed a push model [70, 163]. In this scenario, a website would notify

an interested third party when its holdings were updated. This model has never been adopted by

any commercial search engine.

4 PRESERVING WEBSITES

As noted in previous sections, there are a number of strategies and systems that have been built

to preserve web resources and complete websites. Web archivists have been focused on preserving

websites that they deem important, and search engines provide short-term preservation of web

resources in their caches. Services like Furl and Hanzo:Web allow users to save important web

resources, and various systems like TTApache, iPROXY and InfoMonitor provide versioning of

website URLs and web server files.

Each of these preservation systems can be divided into two categories based on the level of

preservation they provide:

1. client view - This is the view the client is presented after making an HTTP request for a web

resource.

2. server view - These are the generative mechanisms or server components (scripts, files, databases,

etc.) that are responsible for generating the client view of the website.

Preserving the client view is generally sufficient to those who are interested in what a particular

website said or looked like at the time of capture. Capturing the client view is straightforward for

a third party, but the server view is generally only accessible to the website’s administrator. In

the event of losing a website, recovering the client view is generally sufficient for websites composed

of static resources since the the client view is equivalent to the files that reside on the web server.

But recovering the server view is often more important when the functionality of a dynamic website

needs to be restored.

Table 1 summarizes the systems or mechanisms that are used or could be used for preserving web

resources along with their limitations if using the mechanism to restore a lost website. Some systems

are designed specifically for recovering lost websites (e.g., filesystem backup and InfoMonitor) but

are useless to third parties wanting to recover the website. Some of the systems generally serve other
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TABLE 1: Systems for preserving and recovering web resources.

System Summary Limitations

1. Filesystem backup
Long-term storage of website on
permanent storage media.

Backup may be lost or performed
incorrectly, each website must be
configured for backup, backups
are inaccessible to third parties.

2. InfoMonitor Archival of website web server.
Backup of archived content may
be required, backups are inacces-
sible to third parties.

3. Web archives
Long-term archival of “impor-
tant” websites.

Website may not be considered
“worthy” of inclusion, slow updat-
ing.

4. Search engine
caches

Most up-to-date resource ac-
cessed from last crawl.

Not all resources may be cached,
non-HTML resources migrated to
lossy formats.

5. LOCKSS
Long-term storage of websites in
P2P system from selected pub-
lisher websites.

Only publisher websites are pre-
served, only libraries have access
to LOCKSS.

6. CiteSeer
Automated indexing and migra-
tion of academic articles.

Only preserves academic articles.

7. TTApache

Apache module offering long-
term archival of resources that
are requested through a browser
from a specific website.

Resources that have not been
accessed (browsed) will not be
archived, backup to archive may
be lost or damaged.

8. iPROXY
Proxy server offering long-term
archiving of requested resources
from a variety of websites.

Backup of archive may be nec-
essary, browsing through a proxy
server.

9. Furl/Spurl
Archival of web resources by
manual selection.

Complete coverage of any website
is unlikely.

10. Hanzo:Web/
Archive-It

Archival of websites by manual
selection.

Websites must be selected in ad-
vance.

11. Browser cache Storage of requested resources.
Individual browser caches are not
publicly accessible.

functions (e.g., CiteSeer and a browser’s cache), but they could also be used for recovering at least

some portions of a website. Systems 1-2 preserve the server view of a website, and 3-11 preserve

only the client view. If a complete website is lost, each of these systems could be used to reconstruct

the website with variable degrees of success.

5 CONCLUSIONS

The ephemeral nature of the Web creates a number of challenges for preserving it. Link rot is

a pervasive problem, and a number of approaches have been developed to combat it that range

from archiving individual web servers and important web pages to caching large portions of the

surface web to preserving large snapshots of the Web. The next chapter discusses how some of these

approaches can be utilized together to provide a layer of preservation with wide-coverage of the Web

and minimal work on behalf of web content creators.
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CHAPTER III

LAZY PRESERVATION AND THE WEB INFRASTRUCTURE

Conventional web preservation projects and techniques require a significant investment of time,

money and effort and are thus applicable only to collections of known value. The limited scope

of such projects may leave a number of potentially important web collections unprotected. For

these unprotected collections, lazy preservation can provide a broad preservation service with no

cost to individual content producers. Lazy preservation make use of the Web Infrastructure (WI),

the distributed efforts of multiple organizations and companies that store web content, often as by-

products of their user services. This chapter defines lazy preservation and investigates how stored

content can be mined from the WI members (or web repositories).

1 LAZY PRESERVATION

It is difficult, if not impossible, to know in advance when digital data is soon to be lost. Catastrophic

events like hard drive crashes, viruses, fires and even death are unpredictable. And it is also not

always clear what is important and should be saved. The importance of online content will usu-

ally vary depending on the intended audience and subject matter. Some material may be deemed

important on a national level, like websites documenting the 9-11 terrorist attacks. Other material

may have significant importance to a smaller group of individuals, like the blog of a deceased family

member or a website specializing in a particular genre of music. A considerable amount of institu-

tional effort may be applied to preserving 9-11 content, but content that is important to a much

smaller audience may not be afforded such protections.

An individual or organization may take steps to preserve their own content by utilizing sound

backup procedures. Thus the publisher incurs a cost in time and money to ensure their content

remains accessible. Studies have found that most individuals do not make regular backups of their

personal data [31], and organizations that do make backups are not immune to backup failures or

fires [59]. Even the most secure backup procedures will not ensure that a website remains available

once the publisher loses interest in the website, goes bankrupt or dies.

Because individuals and organizations are sometimes unable (or unwilling) to incur personal cost

to ensure long-term access to their websites, there is a need for a preservation service which can

provide wide coverage of the Web with minimal expense to the publisher. Revisiting the systems

described in the previous chapter, most cost the producer time or money to protect their websites

from loss.

Figure 2 maps the systems of the previous chapter according to the publisher’s relative cost

(in time, effort or equipment) to have their website preserved and the coverage that the systems

provide to the entire Web. Backup systems for the server view require setup and configuration,

paying subscription fees or hardware costs. TTApache and iPROXY require installation and extra

measures to ensure a complete website is preserved. Personal archiving services like Furl, Hanzo:Web

and Archive-It can be used to preserve web content a priori, but they are not helpful if action was
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FIG. 2: Publisher’s cost and Web coverage of preservation systems/mechanisms.

not taken prior to the loss. Browser caches may have stored a large range of requested resources, but

access to browser caches are generally not made public. Other systems like LOCKSS are dedicated

to preserving content from a small group of sites and do not provide large coverage of the Web.

However, search engines and web archives preserve a wide range of web resources for the client

view. There is no cost to the publisher except to ensure that their content is crawlable. Other

systems that are publicly accessible like Furl, Hanzo:Web and CiteSeer may not have as large a

coverage, but they could still be used in addition to search engine caches and web archives to find

some web resources that may have been missed.

These repositories of web resources (or web repositories) form the backbone of the Web

Infrastructure (WI). The WI refreshes and migrates web content, often as side effects of their

user services. Lazy preservation utilizes the WI to provide a passive but broad preservation service

for the Web. Rather than relying on an institutional commitment to preserve small collections of

known worth, lazy preservation makes use of the distributed, uncoordinated nature of the WI to

provide large-scale preservation of web resources of unknown importance.

The shaded portion of Figure 2 shows there is no equivalent preservation service for preserving

the server view of a website. However, the WI could be used to provide such a service if the server

components could be discreetly injected into resources already ingested by the WI. Chapter VIII

will explore how this can be done in more detail.

There are several scenarios where lazy preservation would be the only preservation mechanism

in place to recover a lost website:

• When the website owner has not backed-up their website.

• When the backup of a lost website is not accessible, was not performed properly or is incomplete.

• When a third party with no access to a backup wishes to recover a lost website.
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TABLE 2: Sample of reconstructed websites.

Date Website description How it was lost

Oct. 2005 WWW 2006 conference website Fire destroyed the building housing the web server
Jan. 2006 Kickball organization Web server’s hard drive crashed
Mar. 2006 Christian academic article archive ISP hosting the site for free discontinued their service

Apr. 2006
Educational site about Roman his-
tory

Website owner died, and website eventually ceased
operating

Apr. 2006 Fan site of pop singer Shiri Maimon Website was hacked, and owner did not have backups

Aug. 2006 Personal website
ISP accidentally deleted the site and did not have a
backup

Oct. 2006 Limo company
All ISP’s sites were pulled by police because ISP was
hosting illegal content

Oct. 2006
US Congressman Mark Foley’s web-
sites*

Sites were pulled when Foley resigned over inappro-
priate conduct

Oct. 2006
Supports sexual assault victims of
Darfur*

Unknown

Apr. 2007 Academic law organization in India Owner accidentally deleted the site

Apr. 2007 Professional technical organization
Web server crashed and backups only partially
worked

*Reconstructed by request of the Library of Congress.

Some examples of lazy preservation being used to recover lost websites are listed in Table 2

[110]. The examples serve to illustrate the wide variety of reasons why websites are lost: hard drive

crashes, hacking, accidents, death, etc.

2 LIMITATIONS

The WI is limited by a number of factors. Web repositories like search engine caches and web archives

primarily use web crawling to find content and update their holdings. Web crawling is limited to the

surface web, the portion of the Web that is connected with hyperlinks. As mentioned in the previous

chapter, there is a large part of the web, the deep (or invisible) web, which is often inaccessible to

crawlers. Therefore pages that are returned in response to a query, hidden behind JavaScript, Flash

and CAPTCHAs, and pages that are not connected to others are usually inaccessible to the WI.

Additionally, search engines and web archives respect the robots exclusion protocol which makes

certain URLs off-limits to the crawlers, and they will not store web pages that use noarchive meta

tags [79, 81, 122, 145]. They also limit the depth they crawl websites to avoid crawler traps.

Fortunately, search engines have become so ubiquitous today that websites are designed to be

“crawler friendly” [68, 173]. In fact, an entire industry (search engine optimization or SEO) has

emerged that tunes websites for optimal crawling and positioning in search engine results. Many

websites have also started to use special tools like the Sitemap Protocol [155] to allow crawlers to

locate deep web content on their sites.

The search engine’s goal of providing information to users may sometimes conflict with preser-

vation goals. Search engines often avoid crawling duplicate content [154] or content determined to

be spam [56], and they are not interested in indexing or caching some resource types as will be
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discussed later in this chapter. They may not crawl deeply into a website since such pages may not

be useful to search engine users [12]. And they are not likely to keep pages cached long after they

detect the pages are no longer accessible on the Web as will be explored in Chapter IV. The caching

mechanism, in fact, is the most limiting factor for using search engine caches for preservation: miss-

ing content is quickly purged from cache, and older versions of a resource cannot be located in the

cache.

Web archives face many of the same technical challenges as search engines when crawling the

Web, but they are not as likely to avoid duplicate content, spam or any particular resource format.

Because the archive’s goal is to preserve the Web just as it was found, web archives are very useful

web repositories when reconstructing lost websites. Unfortunately, web archives may not have the

same amount of resources (human and technical) available as commercial search engines, and their

coverage of the Web may be somewhat limited.

3 WEB REPOSITORIES

Web repositories are members of the WI that crawl and store a sizeable portion of the Web and

provide URI granularity to access their stored resources. Web repositories are generally accessible

to automated queries through the HTTP protocol, using direct GET queries or an API, web service,

or any other method that can be automated.

3.1 Web Repository Types

Web repositories may be characterized by the depth of their holdings. Search engine caches like

Google’s are repositories that store only the latest resource crawled; when a resource is re-crawled,

the new resource replaces the older version in the repository. The depth d of such repositories is

one since only one copy of a resource is maintained. Search engine caches are thus examples of flat

repositories (d = 1). A deep repository (d > 1) maintains older versions of resources; it stores a

datestamp along with each version of the resource with the same URI. Web archives like the Internet

Archive (with d =∞) are examples of deep repositories.

Web repositories may also be categorized by the access granted to their holdings [167]. Dark

repositories do not provide public access to their holdings. Some repositories are made dark due to

legal restrictions (e.g., national web archives) or because they are merely serving as a fail-safe in

case the original resource is no longer accessible. Light repositories, however, place minimal access

controls on their holdings. Search engine caches and IA are examples of light repositories. In some

cases though, IA holdings may be considered dark since IA will not allow public access to an archived

resource when the website from which the resource was obtained contains a robots.txt entry blocking

access to the item [80]. Some repositories may be called “grey” because they are limited to a small

number of individuals, like Cornell’s Yesternet [8, 9] which is limited to researchers.

3.2 Search Engine Caches and Web Archives

Google, Live Search (previously MSN Search) and Yahoo are three of the largest and most popular

search engines, garnering over 86% of all web searches in May 2007 [19]. Recent overlap studies have
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FIG. 3: Google provides “Cache” and “View as HTML” links to cached resources.

shown that all three search engines have indexed significantly different portions of the Web [16, 69].

All three search engines make their indexed pages available from the “Cached” link (or “View as

HTML” for other document types) provided next to each search result (Figure 3). These cached

resources can be used for recovering lost pages if caught in time. Ask, a notable commercial search

engine, also makes some resources available from their cache, but as will be seen in the next chapter,

they do not make enough of their cached resources available to be a very useful web repository.

The Internet Archive is currently the world’s largest publicly accessible web archive. Although

there are several large national web archives in existence [49], none are focused on saving the entire

Web. An overlap analysis of the Internet Archive’s holdings (more in Chapter IV) indicates there

are numerous resources found in search engines caches that are not found in the Internet Archive.

Although there are a number of web repositories that could be used for lazy preservation, these

four repositories are the largest and are therefore the primary focus in this dissertation:

1. Google - Google is the most widely used search engine [19] and has likely indexed more of the

Web than any other search engine [16, 69]. In 1997, it was the first search engine to make “cached”

pages available from their search results, and they have continued to do so despite the copyright

concerns their innovation raised [133]. Google was also the first search engine to make available

a free SOAP-based API for accessing their index in an automated fashion [131]. Unfortunately,

they were also the first search engine to deprecate their API despite a large install base [41]. And

as mentioned before, Google pioneered the use of the Sitemap Protocol [155], a technique which

allows web servers to advertise the URLs they would like search engines to index; the protocol
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has since been adopted by Live Search and Yahoo.

2. Live Search - Microsoft’s search engine, previously known as MSN Search until 2006, has strug-

gled behind Google and Yahoo in terms of index size and usage. Nevertheless, they have continued

to improve their search engine over the last several years, adding their own internal image search

functionality in 2006 [153]. The Live Search web search API is the least restrictive of all the search

engine APIs in terms of query limits, and their API has been shown to be the most synchronized

with what regular users see [116, 118].

3. Yahoo - Yahoo is the oldest of the three web search companies, and they currently have the

second largest index. Their REST-based API has flexible query limits and can be used to acquire

both textual and image resources from their cache. Yahoo was one of the first search engines to

pioneer the use of OAI-PMH to gather deep web resources [169], and it was estimated in 2005

that they had indexed more of the OAI-PMH corpus than the other two search engines [113].

4. Internet Archive - The only deep repository on the list, IA is also the only non-commercial

repository of the four. IA has traditionally relied on crawl data from Alexa Internet, a commercial

company primarily focusing on web traffic monitoring, but recently they have augmented their

archive with crawls from their own web crawler Heritrix [82]. IA’s holdings have previously been

6-12 months out-of-date, but recent improvements have narrowed the gap to three months. IA

does not have an API.

3.3 Storage Formats

The Internet Archive strives to maintain an accurate snapshot of the Web as it existed when crawled.

Therefore they archive each resource in the same format in which it was crawled. Search engines

have traditionally been HTML-centric, but as the amount of non-HTML resources has grown, so

has their ability to index and cache these types of resources.

When adding PDF, PostScript and Microsoft Office (Word, Excel, PowerPoint) resources to their

cache, the search engines create HTML versions of the resources which are stripped of all images.

In most cases it is not possible to recreate the canonical version of the document from the HTML

version. Figure 4 shows a PDF as it was cached by MSN (Live Search), Yahoo and Google. Although

“IMPROVING” looks like an image in two of the caches, it is text displayed in HTML using a style

sheet.

The search engines have separate search interfaces for their images, and they keep only a thumb-

nail version of the images they cache due to copyright law [132] (Figure 5). As shown in Table 3,

most resources are not stored in their canonical format in the search engine caches. In some cases

like Flash, text from the resource may be indexed, but the binary resource is not accessible from the

repository. Only HTML appears to be stored in its canonical format across all four repositories.

There are many other resource types not mentioned in Table 3 that may be found on the Web:

binary programs, video, audio and archive files. While the IA attempts to preserve these resource

types, search engines are generally not interested in them since there is little or no textual content

that can be indexed.
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FIG. 4: Original PDF and the HTML cached versions.

FIG. 5: Google’s cached thumbnail of http://www.cs.odu.edu/files/ecsbdg.jpg.
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TABLE 3: Web repository-supported data types as of July 10, 2007.

Type Google Yahoo Live IA

HTML C C C C
Plain text M M M C
GIF, PNG, JPG M M M C
JavaScript M M C
MS Excel M ∼S M C
MS PowerPoint M M M C
MS Word M M M C
PDF M M M C
PostScript M ∼S C
Flash ∼S C
XML C ∼S C

C = Canonical version is stored
M = Modified version is stored (image thumbnails or HTML conversions)
∼S = Indexed but stored version is not accessible

3.4 Accessing

Web repositories may be accessed using HTTP requests through a web browser or automated pro-

gram. Some search engines like Google and Live prohibit automated queries against their web user

interface (WUI) in their Terms of Service [66, 123]. Google and Yahoo have also been known to quit

responding to IP addresses that they suspected were issuing automated queries [106, 108]. Figure 6

shows a web page returned by Google when it detected a query was automated.

Because querying search engine WUIs by automated methods is problematic, use of their APIs is

often preferable. Unfortunately, the APIs are limited to a fixed number of queries per day, and recent

research has shown that Google’s and Yahoo’s APIs may be offering results from smaller indexes; in

many cases, the APIs do not produce the same results as the WUIs [116, 118]. Google’s API does

not provide access to their images, so querying their WUI is necessary. Google also appears to be

phasing-out their SOAP-based API since they are no longer issuing access keys [41].

3.5 Crawl Interface

A web repository can be used for lazy preservation when it provides an interface which allows it to

be crawled just like a website. In order to be crawled, a web repository must support, at a minimum,

the ability to handle the query, “What resource r do you have stored for the URI u?” where u is

the resource’s URL when it was obtained by the repository on the Web:

r ← getResource(u) (1)

The repository will respond to this query with the resource in the same format (canonical format)

in which it was crawled from the Web or in some altered format, such as a thumbnail version of an

image. If the resource has not been stored, the repository will respond with some negative response.

The format of the resource may be supplied as metadata with the resource, or it may be inferred
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FIG. 6: Google error screen returned when automated queries are detected.

from the URI, its usage in the source HTML page or the repository from which the resource is

obtained. For example, if Google were queried for the resource at http://foo.org/hello.gif, it

could be inferred that the resources is an image because of the URI’s .gif ending or because it was

referenced in an <img> tag. Since Google Images is known only to store thumbnail images, it can

additionally be inferred that the resource is not in its canonical format. Had the resource been

obtained from the Internet Archive, it could be assumed the image was in its canonical format.

Deep repositories should allow resources to be obtained using a URI u and the datestamp ds, the

day on which the resource was crawled, to distinguish among multiple versions of the same resource:

r ← getResource(u, ds) (2)

The repository will only respond with the resource at URI u that was crawled on date ds. To obtain

a list of available datestamps that are acceptable, the repository should ideally support a query

which returns the stored resources for the given URI u:

D ← getResourceList(u) (3)

where D is the set of all datestamps stored in the repository for the resource.

Flat repositories should ideally provide the date the returned resource was crawled, perhaps as

metadata in r from getResource, or by supporting such a query:

d← getCrawlDate(u) (4)

Having a datestamp for each resource allows a web-repository crawler to chose between multiple

resources from multiple repositories that have been crawled at different times, like, for example,
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TABLE 4: Implementation summary of web-repository interfaces.

Queries IA Google Live Yahoo

getResource X X X X
getResourceList X N/A N/A N/A

getCrawlDate X Limited to HTML Images not supported
Last modification date,
images not supported

getAllUris X First 1000 results only First 1000 results only First 1000 results only

when wanting to select the most up-to-date resource. It also allows the crawler to reject resources

that are not from a particular time frame.

An additional query type which allows for more efficient crawling is, “What resources R do you

have stored from the site s?”:

R← getAllUris(s) (5)

The returned value R is a set of all URIs and datestamps stored in the repository {(u1, d1), (u2, d2),

..., (un, dn)}. This type of query, called a lister query, can greatly decrease the number of queries

that a repository must handle since it can be asked for only those resources it is known to contain

(the effects of this speed-up are discussed in Chapter VII). Additionally, deep repositories may

provide an enhanced query to limit the returned resources to a particular date range dr:

U ← getAllUris(s, dr) (6)

3.6 Implementing the Interface

Each of the repositories implement the interface queries of the previous section in different ways.

Some only partially support the interface. A summary of the web-repository interfaces supported

by the four web repositories is given in Table 4.

Flat Repository

The three search engines implement the repository interfaces in a similar manner with a few sig-

nificant differences. All three search engines support getAllUris, getCrawlDate and getResource

queries. To perform getAllUris (lister queries), the query parameter “site:” is used. For example,

to retrieve all URLs for the website www.cs.odu.edu from Google, the query site:www.cs.odu.edu

is used as illustrated in Figure 7. All three search engines will return only the first 1000 results, so

lister queries are of limited use for large websites.

The getCrawlDate query is not supported directly by Google and Live, but it is indirectly

supported by examining the metadata returned from the getResource query. Figure 8 shows how

the cached page from http://www.cs.odu.edu/ was found in Google by using the “cache:” query

parameter (Live’s cached page heading is similar). Notice how the crawl date is located in the Google

header of the page. Unfortunately, Google does not make the cached date available for non-HTML

resources, so getCrawlDate is only partially supported by Google.
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FIG. 7: Google query for site:www.cs.odu.edu returning “about 34,600” results.

Yahoo does not place the crawled date in their cached page’s heading; it must be retrieved using

their API. The date returned by Yahoo’s API is not the date the resource was crawled but instead

the date they last noticed it had changed (the ModificationDate). Yahoo does not specify how they

measure change, but it is likely based on the resource’s Last Modified HTTP header.

In order to access images from the search engines, a different but similar procedure is involved.

The getAllUris query is invoked against Google Images (or images API for Live and Yahoo). To

illustrate, Figure 9 shows Google Images being queried for all images on www.cs.odu.edu. Again,

only the first 1000 results can be obtained. The getResource query is implemented by finding the

URL of the thumbnail image and accessing it directly. Note that no datestamp is available for

images from any of the search engines.

Deep Repository

The interface queries getAllUris, getResourceList and getResource are all supported by IA. To

perform getAllUris, an HTTP request is made in the form: http://web.archive.org/web/*sr_

0nr_20/http://www.cs.odu.edu/*. IA will respond to this query with a listing of all URIs it has

stored that match the given URI prefix as shown in Figure 10. IA does not limit the number of

results returned, so paging through all resources stored is possible. The getAllUris query with

date range is not completely supported by IA, but a date range of one year (e.g., limiting to 2006 is

http://web.archive.org/web/2006*/http://www.cs.odu.edu/) or one month (e.g., limiting to
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FIG. 8: Google query for cache:http://www.cs.odu.edu/ returning the cached page as it was
crawled on July 7, 2007.

FIG. 9: Google Image query for site:www.cs.odu.edu returning “about 1,000” results.
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FIG. 10: IA response to http://web.archive.org/web/*sr 0nr 20/http://www.cs.odu.edu/*.

January 2006 is http://web.archive.org/web/200601*/http://www.cs.odu.edu/) is supported.

IA also supports the getResourceList query by returning a page listing all the stored versions

of a page. Figure 11 shows an example of a getResourceList query for the root page of the

www.cs.odu.edu website.

The getResource query is implemented by directly accessing any of the stored resources. For

example, the page stored on January 24, 2005, can be accessed at http://web.archive.org/

web/20050124084644/http://www.cs.odu.edu/. Note the date (ds) in YYYYMMDD format

(20050124) embedded in the URL.

4 CONCLUSIONS

The Web Infrastructure is a combination of many distributed players who migrate and refresh web

content, often as a side effects of their primary mission. Lazy preservation can utilize the WI as a

passive preservation service for recovering a large portion of the Web that may be left unprotected.

In the advent of complete loss, lazy preservation may be the only means by which a missing website

can be recovered. Lazy preservation makes use of web repositories to recover missing content, and

the interfaces to four web repositories (Google, Live Search, Yahoo and the Internet Archive) were

explored this chapter. The next chapter will investigate the holdings and behavior of these four

repositories to better understand how they can be utilized for lazy preservation. Chapter V shows

how these repositories can be crawled by a web-repository crawler.
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FIG. 11: IA response to http://web.archive.org/web/*/http://www.cs.odu.edu/.
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CHAPTER IV

CHARACTERIZING THE WEB INFRASTRUCTURE

As mentioned in previous chapters, the WI may refresh and migrate web content at will. But how

quickly and thoroughly will the WI consume new web content, and how long will it retain content

that is removed from the Web? How much content stored in the caches of search engines is also

accessible from the IA? This chapter investigates these questions using two separate experiments;

one experiment was designed to characterize the WI’s ability to discover and maintain new and

decaying web resources [119], and the other experiment was designed to examine more deeply the

contents held in search engine caches and to measure overlap with IA’s holdings [117]. From these

experiments, a more holistic view of the web repositories comprising the WI emerges.

1 A MODEL FOR RESOURCE AVAILABILITY

A resource that is made available on the Web must be discovered and consumed by the WI for it to

be lazily preserved. If a resource is discovered and archived by a web archive (deep repository), it

will likely remain accessible from the WI even when the resource disappears from the Web. However,

if a resource is discovered and cached by a search engine (flat repository) and then disappears from

the Web, it will only have a limited time of protection before it is purged from the search engine’s

cache.

Figure 12 illustrates the life span of a web resource from when it is first made available on a

web server to when it leaves a search engine cache. A web resource’s time-to-live on the web server

(TTLws) is defined as the number of days from when the resource is first made accessible on the

server (t0) to when it is removed (tr). The period beginning when the resource is accessible from

a search engine’s cache (ta) to when it is finally purged (tp) defines a resource’s time-to-live in

the search engine cache (TTLc). The following classifications are used to describe the resource’s

availability:

• Vulnerable - A new resource which has not yet been discovered by a search engine (td) and made

available in the search engine cache (t0 to ta).

 
 

td ta

tr

tp
TTLc SE cache tm

TTLws

t0

          vulnerable          replicated        endangered    unrecoverable 

Web server 

FIG. 12: Timeline of search engine resource acquisition and release.
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TABLE 5: Resource availability states.
PPPPPPPPWeb

Cache
Accessible Not Accessible

Accessible Replicated Vulnerable
Not Accessible Endangered Unrecoverable

• Replicated - A resource which remains accessible on the web server and has also been cached by

a search engine (ta to tr).

• Endangered - A resource which is no longer accessible on the web server but still remains cached

(tr to tp).

• Unrecoverable - A resource which has been discovered to be no longer accessible on the web

server (tm) and has been evicted from cache (tp).

A resource is recoverable if it is currently cached (i.e., is replicated or endangered). Ideally, a

cached resource will always be accessible from the cache at any given time, but as will be seen in

Section 2.3, this is not always so. Therefore, a recoverable resource can only be recovered during

the TTLc period with a probability of Pr, the observed number of days that a resource is retrievable

from the cache divided by TTLc.

It should be noted that the TTLws and TTLc values of a resource may not overlap. A search

engine that is slow in updating its cache, perhaps because it obtains crawling data from a third

party, may experience late caching where tr < ta. This is particularly true for a web archive like IA

that makes resources available from their archive months after they have been crawled.

For a website to be lazily preserved with minimum vulnerability, its resources need to be cached

soon after they appear on a website. Search engines may also share this goal if they want to index

newly discovered content as quickly as possible. For lazy preservation to be maximally effective,

resources should remain cached long after they have been deleted from the web server (remain

endangered) so they can be recovered for many days after their disappearance. Search engines, on

the other hand, may want to minimize the endangered period in order to purge missing content from

their index. Resources which are “popular” by search engine standards and change frequently may

be re-crawled more often than unpopular, static content, and therefore may be purged quickly once

they go missing. Unfortunately, inducing a search engine to crawl a website at a specific time is not

currently possible, and there is no way to externally exert control over cache eviction policies.

2 WEB INFRASTRUCTURE PRESERVATION CAPABILITY

To characterize the WI’s ability to discover and retain web content, an experiment was designed to

measure how long it took for three search engines (Google, MSN and Yahoo) to discover new web

content and keep the content cached after it had disappeared. Four web collections were created by

Joan Smith, a Ph.D. student at ODU, to control the creation and decay rate of the content. After
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deploying the collections, the three search engines were queried daily to determine how much of the

content had been discovered and remained cached, and the crawl logs were analyzed to determine

how long it took for crawled content to become accessible from the search engines’ caches. The

experiment provided measurements for the resource availability model developed in the previous

section and revealed very different crawling and caching policies for the three search engines.

2.1 Web Collection Design

Four synthetic web collections were created with the same number of HTML, PDF and image

resources. Although the content of the HTML and PDF resources varied, the link structure was

identical for all four collections. The web collections were deployed in June 2005 at four different

websites:

1. http://www.cs.odu.edu/~fmccown/lazy/

2. http://www.cs.odu.edu/~jsmit/lazy/

3. http://www.cs.odu.edu/~mln/lazy/

4. http://www.owenbrau.com/

The .com website was new and had never been crawled before, but the three .edu websites had

existed for over one year and had been previously crawled by multiple search engines. In order for

the web collections to be found by the search engines, links were placed to the root of each web

collection from the .edu websites, and owenbrau’s base URL was submitted to Google, MSN and

Yahoo one month prior to the experiment. For 90 days resources were systematically removed from

each collection.

The web collections were organized into a series of update bins or directories which contained

a number of HTML pages referencing the same three inline images (GIF, JPG and PNG) and a

number of PDF files. An index.html file (with a single inline image) in the root of the web collection

pointed to each of the bins. An index.html file in each bin pointed to the HTML pages and PDF

files so a web crawler could easily find all the resources. All these files were static and did not change

throughout the 90 day period except the index.html files in each bin which were modified when links

to deleted web pages were removed. At no time did the websites point to any missing resources.

The number of resources in the web collections were determined by the number of update bins

B, the last day that resources were deleted from the collection T (the terminal day), and the bin

I which contained three images per HTML page. Update bins were numbered from 1 to B, and

resources within each bin b were numbered from 1 to bT/bc. Resources were deleted from the web

server according to their bin number. Every n days one HTML page (and associated images) and

one PDF file from bin n were deleted. For example, resources in bin 1 were deleted daily, resources

in bin 2 were deleted every other day, etc. Links were also removed to the deleted HTML and PDF

files from bin n’s index.html file.
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FIG. 13: Number of resources in web collection.

On any given day d during the experiment (where d = 0 is the starting day and d ≤ T ), the total

number of resources in the web collection was defined as:

Total(d) = 2 +
B∑

i=1

Totalb(i, d) (7)

The total number of HTML, PDF and image files in bin b on any day d was defined as:

Totalb(b, d) = HTML(b, d) + PDF (b, d) + IMG(b, d) (8)

The total number of resources in each update bin deceased with the bin’s periodicity as show in

Figure 13. The number of HTML, PDF and image files in each bin b on any day d was defined as:

HTML(b, d) = bT/bc − bd/bc+ 1 (9)

PDF (b, d) = bT/bc − bd/bc (10)

IMG(b, d) =


3(HTML(b, d)− 1) if b = I

0 if HTML(b, d) = 1

3 otherwise

(11)

Each web collection had 30 update bins (B = 30) that completely decayed by day 90 (T = 90),

and bin 2 (I = 2) contained supplemental images. So the total number of files in each collection

on day 0 was Total(0) = 954. The web collections were limited to less than 1000 resources in order

to limit the number of daily queries to the search engines (the following section discusses these

limitations). There were fewer images than HTML and PDF pages because it was hypothesized

that images were not cached as frequently as other resources, and the cost of querying for images

(number of queries issued per resource) was higher than for HTML and PDF resources.
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The TTLws for each resource in the web collection was determined by its bin number b, page

number p, and the web collection terminal day T :

TTLws = b(bT/bc − p + 1) (12)

An example PDF page from one of the web collections is shown in Figure 14. HTML pages

looked very similar. Each HTML and PDF page contained a unique identifier (UID) at the top of

each page that included four identifiers: the web collection (e.g., ‘mlnODULPT2’ means the ‘mln’

collection), bin number (e.g., ‘dgrp18’ means bin 18), page number and resource type (e.g., ‘pg18-2-

pdf’ means page number 2 from bin 18 and PDF resource). The UID contained spaces to allow for

more efficient querying of the search engines.

To generate the content of the synthetic collection, it was necessary to produce pages that

appeared to be legitimate so that search engines would not find them suspicious or classify them

as spam [129]. Designing such a collection is challenging because the search engines’ algorithms

for detecting spam are proprietary and constantly changing. Although the pages could have been

generated from other indexed, pre-existing web pages, the amount of duplicate content could have

led a search engine to reject indexing the pages during the de-duping process [154]. Since search

engines regularly index word lists which contain unique sets of words [34], it was decided that pages

would be generated from a standard English dictionary and would not contain popular search terms

(e.g., “Pamela Anderson”) that might result in the pages being flagged as spam. Using random

words also guaranteed that every page would appear unique.

The experiment was not designed to measure the effect of top level domain, page depth, or

other URL attributes on the crawling and caching behavior of the search engines; the collections

were designed to only simulate “typical” web collections that may be encountered on any website.

Although a number of factors might influence search engine behavior, this type of experiment is

limited in scope because of the amount of queries that can be reasonably made to search engines

on a daily basis. A variety of factors are examined in more depth in an experiment in Chapter VII

where 300 websites are reconstructed from the WI over a period of three months.

2.2 Daily Search Engine Queries

Queries were issued to the three search engines every day of the experiment to determine if the web

collections were accessible from the caches. Screen-scraping (WUI queries) were used since MSN

and Yahoo had not released APIs before the experiment was initiated, and the Google API only

produced 10 results per query. Therefore care was taken to minimize the number of daily queries so

as not to overburden the search engines (a more complete discussion of search engine query limits

is discussed in Sections 3.3 of Chapter V).

Each HTML and PDF resource’s UID was used to querying each search engine. Although the

complete UID could have been queried for each resource, this would have placed a large load on

the search engines. Therefore queries were used which asked for the top 100 results for those

items matching the resource type (‘PDF’ or ‘HTML’) using the first two parts of the UID (e.g.,

‘mlnODULPT2 dgrp18’). This uniquely identified the web collection and bin number1. Each result
1MSN at the time limited the results page to 50 results, so large bins sometimes required more than one query.
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FIG. 14: Example PDF resource from synthetic collection.
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page was parsed for links to cached versions of the resources. More formally, the total number of

daily queries Qb was:

Qb = w · b · t · s (13)

where w is the number of web collections with b bins and t types of resources in each bin, and s is

the total number of search engines queried daily.

Querying the search engine caches for images required a different strategy than the one used for

querying for text-based resources. Each image was given a globally unique filename so that a query

for the image’s filename would result in a found or not found result. For w web collections with i

images and s search engines to be queried daily, the total number of daily queries Qi was:

Qi = w · i · s (14)

2.3 Crawling and Caching Observations

The web server logs were analyzed to capture the crawling behavior of Alexa Internet (who provides

crawls to IA), Google, Inktomi (who provided crawls to Yahoo at the time of this experiment) and

MSN on the synthetic web collections. The logs only showed a single access from Alexa which

was attributed to the author’s use of the Alexa toolbar. A separate IA robot accessed less than

1% of the collections which was traced back to several queries the author made with the Wayback

Machine’s advanced search interface early in the experiment. Therefore the only crawls observed

from IA-related crawlers were artificially induced and of very limited scope.

Both HTML and PDF resources were crawled and cached in great number, but images were

crawled and cached far less frequently; Google and Picsearch (the MSN Images provider at the

time) were the only ones to crawl a significant number of images. The three .edu collections had

29% their images crawled, and owenbrau had 14% of its images crawled. Only four unique images

appeared in Google Images, all from the mln collection. Google likely used an image duplication

detection algorithm to prevent duplicate images from different URLs from being cached. Only one

image (from fmccown) appeared in MSN Images. None of the cached images fell out of cache during

the experiment.

Table 6 summarizes the performance of each search engine to crawl and cache 350 HTML re-

sources from the four web collections (PDF results were similar)2. The table does not include

index.html resources which had an infinite TTLws. There was an error in the MSN query script

which caused fewer resources to be found in the MSN cache, but the percentage of crawled URLs

provides an upper bound on the number of cached resources; this has little to no effect on the other

measurements reported.

The three search engines showed equal desire to crawl HTML and PDF resources. Inktomi

(Yahoo) crawled two times as many resources as MSN, and Google crawled almost three times as

many resources than MSN. Google was the only search engine to crawl and cache any resources from

the new owenbrau website.
2Due to a technical mishap by departmental system administrators, crawling data was unavailable for days 41-55

for owebrau and parts of days 66-75 and 97 for the .edu web collections. Cache queries could not be made on days
53, 54, 86 and 87.
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TABLE 6: Caching of HTML resources from four web collections.

fmccown jsmit mln owenbrau Ave

% URLs crawled
Google 91 92 94 18 74
MSN 41 31 33 0 26
Yahoo 56 92 84 0 58

% URLs cached
Google 91 92 94 20 74
MSN 16 14 14 0 11
Yahoo 36 65 49 0 37

ta

Google 13 12 10 103 35
MSN 65 65 65 N/A 66
Yahoo 47 47 54 N/A 50

TTLc / Pr

Google 90 / 0.78 86 / 0.82 87 / 0.83 40 / 0.98 76 / 0.86
MSN 20 / 0.87 20 / 0.91 21 / 0.90 N/A 20 / 0.89
Yahoo 35 / 0.57 36 / 0.55 24 / 0.46 N/A 32 / 0.53

Endangered period
Google 51 47 47 61 51
MSN 9 7 8 N/A 8
Yahoo 24 25 19 N/A 23

From a preservation perspective, Google out-performed MSN and Yahoo in nearly every category.

Google cached the highest percentage of HTML resources (76%) and took only 12 days on average to

cache new resources from the edu web collections. On average, Google cached HTML resources for

the longest period of time (76 days), consistently provided access to the cached resources (86%), and

were the slowest to remove cached resources that were deleted from the web server (the endangered

period averaged 51 days). Although Yahoo cached more HTML resources and kept the resources

cached for a longer period than MSN, the probability of accessing a resource on any given day was

only 53% compared to 89% for MSN.

Figure 15 provides an interesting look at the crawling and caching behavior of Google, Yahoo and

MSN. These graphs illustrate the crawling and caching of HTML resources from the mln collection;

the other two edu collections exhibited similar behavior. The resources are sorted by TTLws with

the longest-living resources appearing on the bottom. The index.html files which were never removed

from the web collection have an infinite TTL (‘inf’). The red diagonal line indicates the decay of

the web collection; on any particular day, only resources below the red line were accessible from the

web server. For the three graphs on the top row of Figure 15, blue dots indicate resources that were

crawled on a particular day. When resources were requested that had been deleted, the web server

responded with a 404 (not found) code represented by green dots above the red line. The bottom

row of graphs in Figure 15 shows the cached HTML resources (blue) resulting from the crawls. Some

pages in Yahoo were indexed but not accessible from cache (green).

As Figure 15 illustrates, both Google and MSN were quick to make resources available in their

cache soon after they were crawled, and they were quick to purge resources from their cache when

a crawl revealed the resources were no longer available on the web server. A surprising finding is

that many of the HTML resources that were previously purged from Google’s cache reappeared on

day 102 and remained cached for the remainder of the experiment. The other two edu collections
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FIG. 15: Crawling (top) and caching (bottom) of HTML resources from the mln web collection.
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exhibited similar behavior for HTML resources. HTML and PDF resources from owenbrau appeared

in the Google cache on day 102 for the first time; these resources had been deleted from the web

server 10-20 days before day 102. Manual inspection weeks after the experiment had concluded

revealed that the pages remained in Google’s cache and only fell out months later.

Yahoo was very sporadic in caching resources; there was often a lag time of 30 days between the

crawl of a resource and its appearance in cache. Many of the crawled resources never appeared in

Yahoo’s cache. Although Inktomi crawled nearly every available HTML resource on day 10, only half

of those resources ever became available in the Yahoo cache. In subsequent interaction with Yahoo,

it has been observed that links to cached content may appear and disappear when performing the

same query just a few seconds apart. This likely accounts for the observed cache inconsistency.

3 WEB INFRASTRUCTURE CONTENTS

In this second experiment, the contents of the WI are examined. An experiment was designed to

examine the distribution of contents held in search engine caches and the overlap of those contents

with the Internet Archive.

3.1 Methodology

The four most popular search engines that cache content were investigated: Google, MSN, Yahoo

and Ask. In the previous experiment, only Google had a web search API, but at the time this

experiment was executed, MSN and Yahoo had both released an API. Therefore the APIs provided

by Google, MSN and Yahoo were used to access their search results and page scraping the WUI was

used to access Ask’s search results (Ask does not provide a free API).

In February 2007, 5200 one-term queries (randomly sampled from an English dictionary) were

submitted to each search engine, and one of the first 100 results were randomly selected. An attempt

was then made to download the selected URL from the Web and also the cached resource from the

search engine. Finally, IA was queried to see how many versions of the URL it had stored for each

year, if any. All search engine responses, HTTP headers, web pages, cached pages and IA responses

were stored for later processing.

The sampling method produced several biases since it favors pages in English, long and content-

rich pages which are more likely to match a query than smaller documents, and those pages that

are more popular than others. New methods [16, 17] have recently been developed to reduce these

biases when sampling from search engine indexes and could be used in future experiments.

3.2 Accessibility of Indexed Resources

Table 7 lists the percent of resources from each search engine that were replicated (cached and acces-

sible from the Web), endangered (cached but not accessible from the Web), vulnerable (accessible

from the Web but not cached) and unrecoverable (missing from the Web and cache). Resources

were judged to be accessible from the Web if they were successfully retrieved with an HTTP 200

response, and inaccessible if any other HTTP response was received.
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TABLE 7: Web and cache accessibility.

Cached Not cached Miss
Web Missing Web Missing rate

(Replicated) (Endangered) (Vulnerable) (Unrecoverable)
Ask 8.2% 0.4% 77.5% 13.9% 0.05%
Google 76.2% 4.3% 18.4% 1.1% 3.88%
MSN 88.7% 4.5% 5.0% 1.8% 0.01%
Yahoo 76.5% 3.7% 17.9% 2.0% 1.53%

Less than 9% of Ask’s indexed contents were cached (adding the Cached-Web and Cached-Missing

columns together), but the other three search engines had at least 80% of their content cached. Over

14% of Ask’s indexed content could not be successfully retrieved from the Web, and since most of

these resources were not cached, the utility of Ask’s cache is questionable. Google, MSN and Yahoo

had far less missing content indexed, and a majority of it was accessible from their cache. However,

both Google and Yahoo had a rather high percentage of resources that were vulnerable to being lost

(18% for both).

The miss rate column in Table 7 is the percent of time the search engines advertised a URL

to a cached resource but returned an error page when the cached resource was accessed. Ask and

MSN appeared to have the most reliable cache access (although Ask’s cache is very small). Note

that Google’s miss rate was probably higher because Google’s API does not advertise a URL to the

cached resource; the only way of knowing if a resource is cached or not is to attempt to access it.

3.3 Top Level Domain

Figure 16 shows the distribution of the top level domains (TLDs) of the sampled URLs from each

search engine’s index (only the top 15 are shown). These distributions are very similar to those in

[16]. All four search engines tend to sample equally from the same TLDs with .com being the largest

by far.

3.4 Content Type

Table 8 shows the distribution of resources sampled from each search engine’s index (Ind column).

The percent of those resources that were extracted successfully from cache is given under the Cac

columns. HTML was by far the most indexed of all resource types. Google, MSN and Yahoo

provided a relatively high level of access to all cached resources, but only 10% of HTML and 11%

of plain text resources could be extracted from Ask’s cache, and no other content type was found in

their cache.

Several media types were found indexed (but not cached) that are not typically indexed by

search engines. Two videos were indexed in Google using the Advanced Systems Format (ASF),

and an audio file (MPEG) and Flash file indexed by Yahoo. Several XML resource types were also

discovered (and some cached): XML Shareable Playlist (Ask), Atom (Google) and RSS feeds (Ask,
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FIG. 16: Distribution of TLDs from sample.

TABLE 8: Indexed and cached content by type.

Ask Google MSN Yahoo
Ind Cac Ind Cac Ind Cac Ind Cac

HTML 94% 10% 88% 81% 96% 95% 94% 80%
PDF 2% 0% 7% 69% 3% 89% 4% 92%
Plain text 4% 11% 3% 93% 1% 95% 1% 96%
MS Office 0% 0% 0.7% 76% 0.4% 73% 0.6% 100%
Other 3% 0% 8% 69% 3% 89% 4% 92%
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FIG. 17: Distribution of Web file sizes (top) and cached file sizes (bottom) on log-log scale. Web
file size means: Ask = 88 KB, Google = 244 KB, MSN = 204 KB, Yahoo = 61 KB. Cached file size
means: Ask = 74 KB, Google = 104 KB, MSN = 79 KB, Yahoo = 34 KB.

Google and Yahoo), and OAI-PMH responses (Ask and Google). No XML types were found in

MSN.

3.5 File Sizes

Figure 17 plots the file size distribution of the live web resources (top row) and cached resources

(bottom row). The graphs use log-log scale to emphasize the power-law distribution of page sizes

which has been observed on the Web [13]. Before calculating the cached resource size, each resource

was stripped of the search engine header. All four search engines appeared to limit the size of their

caches. The limits observed were: Ask: 976 KB, Google: 977 KB, MSN: 1 MB and Yahoo: 215 KB.

Despite the limits, only 3% of all resources were truncated. On average, Google and MSN indexed

and cached the largest web resources.

3.6 Cache Directives

As discussed in Chapter II, search engines and IA use an opt-out policy approach to caching and

archiving. All crawled resources are cached unless a web master uses the Robots Exclusion Protocol

(robots.txt) to indicate URL patterns that should not be indexed (which also prevents them from

being cached) or if noarchive meta tags are placed in HTML pages. There is currently no mechanism

in place to permit a search engine to index a non-HTML resource but not cache it.

Only 2% of the HTML resources from the Web used noarchive meta tags; 6% specifically

targeted googlebot, and 96% targeted all robots (none were targeting the other three search engines).

Only a hand-full of resources were found with noarchive meta tags that were cached by Google

and Yahoo, but it is likely the tags were added after the search engine crawlers had downloaded the

resources since none of the tags were found in the cached resources.

HTTP 1.1 has a number of cache-control directives that are used to indicate if the requested

resource is to be cached, and if so, for how long. Although these directives were not originally
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TABLE 9: Staleness of search engine caches (in days).

% Stale Mean Median Std Min Max
Ask 16% 7.5 12.0 5.5 2 25
Google 20% 15.1 7.0 26.2 1 343
MSN 12% 6.7 5.0 5.2 1 27
Yahoo 17% 92.1 17.0 220.9 1 1422

intended to address the availability of resources in a search engine cache, some argue that perhaps

they should [20]. One quarter (24%) of the sampled resources had an HTTP header with Cache-

Control set to no-cache, no-store or private, and 62% of these resources were cached. None of the

search engines appeared to respect the cache-control directives since all four cached these resources

at the same rate as resources without the header.

3.7 Cache Freshness

A cached copy of a web resource is fresh if the resource has not changed since the last time it was

crawled and cached. Once a resource has been modified, the cached resource becomes stale (or ages

[36]). The staleness of the cache increases until the search engine re-crawls the resource and updates

its cache.

To measure the staleness the of caches, the Last-Modified HTTP header of the live resource

from the Web was compared to the date the resource was cached. Although most web servers do

not return last modified dates for dynamically produced resources, and some return incorrect values

[40], this is the best known technique for determining when a resource was last modified. Another

difficulty of determining staleness is that cached dates are not available for all cached resources;

Google only reports cached dates for HTML resources, and Yahoo only reports last modified dates

through their API which may not be the same as when the resource was actually cached.

Staleness was calculated (in days) by counting the number of days that had passed from the

cached date to the last modified date. If the cache date was more recent the last modified date

(the resource was cached after it was last modified), a value of 0 was assigned to staleness. More

formally:

staleness = max(last modified date− cached date, 0) (15)

Only 46% of the live pages had a valid HTTP Last-Modified timestamp, and of these, 71% also

had a cached date. A majority of the resources (84%) were up-to-date. The descriptive statistics

for resources that were at least one day stale are given in Table 9, and the distribution is shown in

Figure 18. Although Google had the largest amount of stale cached pages, Yahoo’s pages were on

average more stale. MSN had the fewest amount of stale pages and nearly the most up-to-date set

of pages.

Nineteen percent of the cached resources were identical to their live counterparts, 21% if examin-

ing just HTML resources. To measure the similarity between two resources that were not identical,

the percentage of shared shingles (shingle size of 10) was calculated. Shingling [29] is a popular
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FIG. 18: Distribution of staleness on log-log scale.
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FIG. 19: Scatterplots of similarity vs. staleness (x-axis is on a log scale).

technique for quantifying similarity of text documents when word-order is important. Before calcu-

lating shingles, all HTML (if present) was stripped from both resources so only textual content was

compared. On average, resources shared 72% of their shingles. This implies that although most web

resources are not replicated in caches byte-for-byte, most of them are very similar to what is cached.

The relationship between similarity and staleness was explored by examining the two values in

a scatterplot (Figure 19). The busy scatterplots indicate there is no clear relationship between

similarity and staleness; a cached resource is likely to be just as similar to its live Web counterpart

if it is one or 100 days stale.

3.8 Search Engine Overlap with Internet Archive

A question that may be raised is, “How much of what the search engines have cached is also archived

by the Internet Archive?” Is there a large overlap? Figure 20 shows a Venn diagram illustrating

how some resources held by the IA are indexed by search engines (I) and/or cached (II). But there

are some indexed (IV) and cached (III) resources that are not available in the IA.

As mentioned earlier, the IA was queried with each URL sampled from the search engines. Table

10 shows the overlap of sampled URLs within IA. MSN had the largest overlap with IA (52%) and

Yahoo the smallest (41%). On average, only 46% of the sampled URLs from all four search engines

were available in IA.

Figure 21 plots the distribution of the archived resources. There is nearly an exponential increase

each year except in 2006, likely because at the time of this experiment there was a lag of 6-12 months

before IA made new content available in their archive. The hit-rate line in Figure 21 is the percent

of time the IA had at least one resource archived for that year. It is interesting to note that although

the number of resources archived in 2006 was half that of 2004, the hit rate of 29% almost matched



44

 

Internet
Archive

Indexed 
by search 

engine

I II III IV

Cached 
by search 

engine

FIG. 20: Venn diagram showing overlap of search engine caches with IA.

TABLE 10: Search engine overlap with the Internet Archive.

In IA Not in IA
SE Cached (II) No cache (I) Cached (III) No cache (IV)
Ask 9.2% 36.0% 0.3% 54.5%
Google 40.7% 3.7% 50.3% 5.3%
MSN 51.1% 1.1% 43.7% 4.1%
Yahoo 39.3% 1.8% 47.7% 11.2%

2004’s 33% hit rate.

4 DISCUSSION

The search engines components of the WI were observed to behave very differently when caching four

synthetic web collections. Although Google crawled and cached all new HTML and PDF resources

placed on known websites several days after they were made accessible on the Web, resources on a

new website were not cached for months. Yahoo and MSN were 4-5 times slower than Google to

acquire new resources, and Yahoo incurred a long transfer delay from Inktomi’s crawls into their

cache. Images tended to be largely ignored by all three search engines.

It was also observed that cached resources were often purged from all three caches as soon as

a crawl revealed the resources were missing, but in the case of Google, many HTML resources

reappeared weeks after being removed. Google’s odd behavior may be contributed to internal trans-

ferring of crawl data to more permanent data stores, and it is unknown if the behavior is typical or

repeatable. Moreover, crawling and caching policies may also change over time. Nevertheless, this

experiment provides a glimpse into caching behavior of the top three search engines that has not

been documented before. The findings suggest that search engines vary greatly in the level of access

they provide to cached resources, and that websites are likely to be reconstructed more successfully

if they are reconstructed quickly after being lost. Reconstructions should also be performed several

days in a row to ensure maximum access to web repository holdings. In some cases, it may even be

beneficial to attempt recovering resources months after they have been lost.
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FIG. 21: Distribution and hit rate of sampled URLs with IA.

The second experiment showed that from a digital preservation perspective, Ask was of limited

utility; it had the fewest resources cached (9%) and a majority of the resources were vulnerable

(78%) or unrecoverable (14%). Top level domains appeared to be represented in all four search

engine caches with roughly the same distribution, so no single TLD appeared to be favored more

than another. Noarchive meta tags were infrequently used (2%) in sampled HTML resources,

and search engines did not appear to respect HTTP cache-control headers, two advantages from a

preservation perspective. All search engines seemed to have an upper bound on cached resources of

about 1 MB except for Yahoo which appears to have an upper bound of 215 KB; however, this only

affected 3% of all cached resources. The staleness of the cached resources ranged from 12% (MSN)

to 20% (Google), and median staleness ranged from 5 days (MSN) to 17 days (Yahoo).

While the IA provides a preservation service for public web pages, its limitations of crawling

frequency and 6-12 month delay in processing crawled resources limits its effectiveness. In the first

experiment, IA did not crawl or archive a single resource from the four decaying web collections. In

the second experiment, IA was found to contain only 46% of the resources available in search engine

caches. IA has recently made improvements in their time-to-ingest [83], thus minimizing the delta

between td and ta (Figure 12). This improvement will be evident later in Chapter VIII. Therefore,

if these experiments were repeated, it is likely that IA’s performance would improve.

5 CONCLUSIONS

This chapter investigated the WI’s behavior at finding and storing decaying web content and has

examined the types of content found in the WI. The three search engines showed very different

crawling and caching behaviors, and IA was unable to store any of the decaying content. An

overlap analysis showed IA only contained 46% of the resources that were found cached in the

search engines. These experiments have verified that the Web is too large and too dynamic for a

single entity to capture everything. Chapter VII will emphasize this point by demonstrating how

widely the repositories contribute to various website reconstructions.
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CHAPTER V

WEB-REPOSITORY CRAWLING

Web crawlers are programs that systematically download web pages from the Web, and they have

been around nearly as long as the Web has been in existence. As the Web has increased in size and

diversity, so have the types of crawlers that have been developed. In this chapter, a new type of

crawler is introduced: the web-repository crawler. Instead of looking for web resources to download

from the Web, a web-repository crawler searches for resources in the vaults of web repositories.

1 CRAWLER ARCHITECTURE

A web-repository crawler shares many characteristics with a traditional web crawler, but there

are a number of key differences which make crawling web repositories fundamentally different than

crawling the Web [110]. The left side of Figure 22 illustrates the architecture of a simple web crawler

[37]. The crawler is initialized with one or more seed URLs which are placed into the crawl frontier.

URLs are extracted from the frontier, downloaded from the Web and (usually) stored in a local

repository. HTML resources (and sometimes other resource types) are searched for additional URLs

which are canonicalized and placed on the frontier if they have not yet been visited. This process

usually continues until the frontier is empty.

Figure 22 (right) shows a similar architecture for a web-repository crawler. A web-repository

crawler must also maintain a frontier and list of visited URLs, but instead of downloading from

the Web, resources are extracted from web repositories. This requires a web-repository crawler to

decide between multiple versions of a resource when more than one are found with the same URI.

The canonical version of a resource may be chosen over a non-canonical version in some cases (e.g.,

PDF from a web archive vs. HTMLized version from a search engine cache), or the most recently

stored version may be chosen instead of an older version. URL canonicalization is also necessary for

a web-repository crawler, but it is more difficult to do because the same resource may be represented

by different URIs in different repositories (Section 3 will discuss these issues in greater detail).
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FIG. 22: Architecture of a traditional web crawler (left) and web-repository crawler (right).
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Just as a web crawler “respects” a web server by delaying between requests and issuing a limited

number of requests in a particular time interval, a web-repository crawler may also limit daily

requests to web repositories. In some cases, query limits may be imposed by the repository as it

is with search engine APIs that only allow a limited number of queries in a 24 hour period. For

other repositories, a limit can be selected that is in line with limits used by other repositories. More

formally, the number of queries issued to a web repository in a time period P should be less than

or equal to L. If the crawler makes L queries during P , it should sleep until P has elapsed.

Another similarity between web crawlers and web-repository crawlers can be seen in how they

find resources from their crawling target. Although web crawlers have traditionally been unable to

ask a web server, “What is the set of URLs on your website?” [27], newer methods like the Sitemaps

Protocol [155] (supported by Google, Live and Yahoo) and mod oai [126] have been designed to give

this functionality to web crawlers. Similarly, web repositories can be asked to list the set of URLs

they have stored for a particular website using lister queries (discussed next).

2 LISTER QUERIES AND CRAWLING POLICIES

When web repositories do not support lister queries (Section 3.5 of Chapter II), numerous requests

for non-existing resources may greatly slow down a web-repository crawler. For example, if the

crawler is reconstructing a website that has no resources stored in a particular repository, the

crawler will make numerous getResource queries to the repository, wasting the limited number of

daily queries allocated to the crawler. This näıve behavior can be avoided if a repository supports

lister queries, since the crawler will only make requests for resources it knows in advance are stored

in the repository.

Another advantage of lister queries is that a repository crawler may find more resources from a

lost website than if it were to only examine links in recovered pages. For example, suppose the graph

on the left side of Figure 23 represented the resources (nodes) and links (edges) of website W. If the

website W were to be reconstructed without lister queries and resource F could not be recovered, it

would not be possible to recover G, H and I since no link would exist to those resources from any

recovered resources. But if a lister query revealed resources G, H and I, they could be recovered as

shown on the right of Figure 23, even though they are not directly connected to W’.

A disadvantage of recovering all resources discovered through lister queries is that potentially

many queries could be spent recovering old and useless resources that no longer make-up the recon-

structed website. This could happen for a site that changes its link structure frequently. Additionally,

resources that belong to other subsites may be falsely aggregated into a single site, so resources are

recovered that the recover is not interested in.

The ability to perform lister queries permits a web-repository crawler to reconstruct websites

using one of three crawling policies [115]:

1. Näıve Policy - Do not issue lister queries and only recover resources found by links from recov-

ered pages.

2. Knowledgeable Policy - Issue lister queries but only recover resources found by links from

recovered pages.
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FIG. 23: Website W (left) and reconstructed website W’ (right) that is missing resource F.
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FIG. 24: Architecture of a web-repository crawler using lister queries.

3. Exhaustive Policy - Issue lister queries and recover all resources found in all repositories.

When web repositories support lister queries, an additional database must be maintained to

support the lister query responses. Figure 24 shows the addition of Stored URLs which may be

fed to the Seed URLs if the crawler is using the Exhaustive Policy. The Stored URLs database is

referenced when choosing which repositories to download a resource from.

3 URL CANONICALIZATION

3.1 Tracking Visited URLs

In order to effectively keep track of which URLs have been visited, a web-repository crawler must be

able to distinguish between two syntactically different URLs that point to the same resource. For

example, the URLs http://www.Foo.org/bar.html#abc and http://www.foo.org/../bar.html

resolve to the same resource. The crawler resolves these differences by canonicalizing (or normalizing)

each URL it extracts from recovered HTML pages. The following rules are widely employed by all

types of crawlers when performing URL canonicalization [23, 97, 136] and should also be adopted

by a repository crawler:
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• Convert the domain name to lower case. Additionally, convert the entire URL to lowercase if the

web server’s file system is case insensitive.

Original URL: http://FOO.ORG/BAR.html

Canonical URL: http://foo.org/BAR.html

• Remove index.html, index.htm and default.htm from the end of a URL.

Original URL: http://foo.org/index.html

Canonical URL: http://foo.org/

• Remove the fragment (section link) from the URL.

Original URL: http://foo.org/bar.html#section1

Canonical URL: http://foo.org/bar.html

• Remove all instances of ‘/../’ and ‘/./’ from the URL by collapsing it.

Original URL: http://foo.org/../a/b/../c/./bar.html

Canonical URL: http://foo.org/a/c/bar.html

• Remove multiple occurrences of slashes in the URL before the query string.

Original URL: http://foo.org//a///b

Canonical URL: http://foo.org/a/b

• Convert all hex-encoded characters (%XX) in the range [0x20 to 0x7E] before the query string to

standard ISO-8859-1 (Latin-1) characters (using ‘+’ for spaces), and capitalize all remaining hex

characters.

Original URL: http://foo.org/%7Ebar/a%20b/?test=g%20%8a

Canonical URL: http://foo.org/~bar/a+b/?test=g%20%8A

• Remove common session IDs.

Original URL: http://foo.org/?page=123&jsessionid=999A9EF028317A82AC83F0FDFE59385A

Canonical URL: http://foo.org/?page=123

3.2 Harmonizing Different Repository URL Canonicalization Rules

Each web repository may perform URL canonicalization in different ways when crawling the Web

[115]. For example, one repository may canonicalize the URL http://www.foo.org/index.html

as http://www.foo.org/ and another as http://foo.org/index.html. This presents a number

of difficulties to a web-repository crawler when trying to determine if a repository has stored a

particular URL. Lister queries are useful for resolving some of the problems created by repositories

using different canonicalization policies. Several canonicalization issues are discussed next.

‘www’ Prefix

Some websites provide two URL variations to access their websites, one with a ‘www’ prefix and one

without. For example, the website otago.settlers.museum may be accessed as http://otago.

settlers.museum/ or http://www.otago.settlers.museum/. Many websites will redirect users

and web crawlers from one version to the other using an HTTP 301 (Moved Permanently) status
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FIG. 25: Yahoo search results for site:otago.settlers.museum.

code. In fact, Google and other search engines request this behavior to simplify web crawling [46].

Google, Live and IA may be queried with either version of the URL successfully, but Yahoo will fail

to recognize a request for http://foo.org/ if they crawled http://www.foo.org/.

Lister queries will reveal if a web repository stores a resource using the ‘www’ prefix or not as the

Yahoo query for site:otago.settlers.museum illustrates in Figure 25. This figure shows Yahoo

using www.otago.settlers.museum for results 1-3 and otago.settlers.museum for result 4. A

web-repository crawler may normalize all the URLs under one common host.

Case Insensitivity

Although section 6.2.2.1 of RFC 3986 states the path component of a URI should be case-sensitive

[23], web servers housed on a case-insensitive filesystem like Windows will allow URLs to be accessed

case-insensitively. Therefore the URLs http://foo.org/bar.html and http://www.foo.org/BAR.

html are accessing the same resource on a case-insensitive web server. Google, Yahoo and IA index

all URLs they crawl by the case of the URL and do not take into account the web server’s underlying

filesystem. Therefore if they are asked if they have the URL http://www.foo.org/BAR.html stored,

they will reply ‘no’ when they actually have the URL indexed as http://foo.org/bar.html. Live

does not care about case sensitivity of URLs when queried.

Lister queries reveal the case of the URLs a repository has stored. If a web-repository crawler

knows in advance that a website was housed on a case-insensitive web server, it can convert all URLs

found by lister queries and mining HTML resources into lowercase so case is no longer an issue.
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Missing the Terminating Slash

When extracting links from an HTML page to recover, some URLs that point to a directory may

lack the proper terminating slash (cf. RFC 3986 section 6.2.3). For example, a URL that points

to directory abc should end with a slash like so: http://foo.org/abc/, but the URL may appear

instead as http://foo.org/abc. This does not present a problem when accessing the document

live on the Web since the web server will respond with a 301 (Moved Permanently), and the browser

will transparently redirect the user to the correct URL. But when reconstructing a missing website,

the resource is not accessible on the Web, and there is no way to automatically know in advance if

the URL refers to a directory or not. And although Google, Live and IA all properly report URLs

that end with a slash, Yahoo does not.

Lister queries are useful for reducing the missing slash problem. If a repository like Google

reports that it has a URL stored as http://foo.org/bar/ and Yahoo reports the URL stored as

http://foo.org/bar, it may be inferred that the URL is pointing to a directory since Google’s

canonicalization policy dictates proper terminal slashes for directories. But if Yahoo is the only

repository storing the resource http://foo.org/bar, the crawler must arbitrarily decide to either

treat the URL as a directory or not.

Root Level URL Ambiguity

When a web server receives a request for a URL pointing to the root level of a directory, it will respond

with any number of resources depending on its configuration. For example, http://foo.org/bar/

may be accessing index.html, default.htm, index.cgi or any number of resources. And while the URL

may be pointing to index.html at time t1, it may point to default.htm at time t2. When recovering a

URL pointing to the root level of a directory, a web-repository crawler cannot automatically discover

the name of the file the URL was pointing to when the resource was crawled by the repository. When

a link pointing to http://foo.org/bar/index.html directly is discovered in a recovered resource,

the crawler may infer that http://foo.org/bar/ is referring to index.html, but it cannot be certain.

Web repositories canonicalize root level URLs differently as well. If Google and Yahoo are queried

with index.html appended to a root level URL, they will reply with a ‘found’ response when such

a URL does not really exist. Live takes a different approach; if http://foo.org/bar/index.html

is crawled and they do not encounter the URL http://foo.org/bar/ in their crawl, a request for

the later URL will result in a ‘not found’ response.

Lister queries can reduce this problem. If Live reports that it has a URL stored as http://

foo.org/bar/index.html, the crawler may assume that this URL refers to http://foo.org/bar/

(although this is not always true).

Other Canonicalization Rules

Bar-Yossef et al. [18] have developed an algorithm that can be applied to a list of URLs to determine

which URLs are pointing to the same content without actually examining the content. The algorithm

could be applied by a web-repository crawler to the final set of URLs returned by lister queries. Here

are a few examples of duplicate URLs that could be resolved:
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• http://foo.edu/~bar/ = http://foo.edu/people/bar/

• http://foo.com/story?id=num = http://foo.com/story_num

• http://foo.com/news = http://news.foo.com/

3.3 Theoretical Bounds on Website Reconstruction

Cost to Web Repositories

The collective cost incurred by the web repositories for reconstructing a website is the total number

of queries they must respond to from a web-repository crawler. The query cost C can be defined

as the total number of lister queries needed to discover all the resources from all n repositories plus

the total number of queries needed to download r resources from n web repositories. More formally,

C(r) is:

C(r) =
n∑

i=1

dS(i)/R(i)e+ r

n∑
i=1

Q(i) (16)

where S(i) is the number of resources stored in repository i, R(i) is the number of results the

repository will return to a single lister query, and Q(i) is the number of queries required to download

the resource from the repository. The S(i) and r variables are usually not known in advance, but

all other variables usually are.

Each of these variables varies from repository to repository and can sometimes be difficult to

calculate. For example, R(i) for IA might be one if the direct URL to a resource was obtained from

the lister queries, but often two queries are required, one to ask for the set of URLs stored for the

resource, and another to download the resource. Also, IA sometimes advertises direct URLs for a

resource, but when accessed, the resource is not present, and another query for an older version of

the resource must be made.

The variable Q(i) also varies depending if lister queries have revealed all known resources from

the repository being queried. For example, if a large website is being reconstructed and more than

1000 resources are stored in Yahoo, then the crawler will not know if a given URL which does not

appear in the first 1000 results is stored in Yahoo or not; it will have to query Yahoo twice, once to

see if the resource is stored in Yahoo and another to download the resource.

Daily Query Limits

As mentioned in Section 1, web-repository crawlers normally respect web repositories by limiting

the number of queries they make in a given time period. Search engines like Google, Live and Yahoo

provide APIs for accessing their contents which limit the number of queries a client can make in a 24

hour span. Because a web-repository crawler must crawl in round-robin style where each repository

is queried for the same resource before moving on to the next resource, the repository with the fewest

number of allotted queries is often the one limiting the number of resources that can be recovered

in a day. More formally, the maximum queries M that can be issued per day is:

M = min(limit1, limit2, ..., limitn) (17)
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where limiti is the daily limit of each web repository that contains resources that need to be re-

covered. For the repositories {Google, Live, Yahoo, IA} implemented in Warrick, the limits are

{1000, 10,000, 5000, 1000}. Therefore Google and IA are usually the repositories limiting the overall

recovery rate.

The total days T to reconstruct a website is then the total number of queries to recover all

resources divided by the maximum number of queries that can be issued each day:

T = C(r)/M (18)

4 CONCLUSIONS

A web-repository crawler shares many characteristics with a regular web crawler; the differences

primarily lie in how to canonicalize URLs between various repositories, how to crawl a repository,

and how to choose the “best” resource between several versions of the same resources. The next

chapter introduces Warrick, an instantiation of a web-repository crawler which has been used by the

general public to reconstruct a number of lost websites.
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CHAPTER VI

WARRICK, A WEB-REPOSITORY CRAWLER

The preceding chapter laid the groundwork for developing a web-repository crawler. In this chapter,

the Warrick crawler is introduced, and implementation details are presented. A queueing system

called Brass was developed for Warrick in early 2007 which has allowed the public at large to run

Warrick without downloading and installing it locally. Usage statistics for Warrick and Brass indicate

a large number of individuals are interested in recovering websites from the WI.

1 BRIEF HISTORY

Inspired by discussions with Dr. Michael Nelson and Dr. Johan Bollen, Warrick was created in the

fall of 2005 by the author for demonstrating how a “website reconstructor” could recover pages from

the Internet Archive, Google, MSN and Yahoo for a “lazy” webmaster who lost their website. Dr.

Nelson named the tool Warrick after a fictional forensic scientist from the CSI television show who

had a penchant for gambling– someone too lazy to backup their website is taking a gamble if they

are relying on Google to do it for them.

The first opportunity to use Warrick to reconstruct a lost website came in October 2005 when

a fire at the the University of Southampton rendered the 15th International World Wide Web 2006

Conference website (www2006.org) inaccessible [59]. The website was lost one week before the

deadline for paper submissions. The author ran Warrick and was able to recover 77 resources,

36 from Google, 3 from Yahoo and 38 from MSN. After contacting the conference organizers, the

author learned that they had used a script to recover some pages from Google’s cache, but they

had not thought to look for pages in MSN or Yahoo. Leslie Carr, one of the conference chairs,

stated in an email correspondence [115]: “Our problem was not with data recovery but with service

sustainability. We knew that we would be able to reconstruct the data (at some point); the challenge

was reconstructing enough data now.” The web server was later recovered intact, and the website

was restored a week later.

Several months later, the author was made aware of a tool developed by Aaron Swartz called

arcget [160] which could recover a website from the Internet Archive. Swartz was unaware of Warrick

at the time, so he created arcget to extract pages for an old website called the Lingua Franca

Archive, an archive of scholarly review articles. Swartz later re-hosted the recovered website at

http://linguafranca.mirror.theinfo.org/.

In January 2006, the author placed Warrick online for others to download and use. A few weeks

later, an individual named Dwight (not his real name) used Warrick to reconstruct two websites

that he lost when his web server’s filesystem crashed. One site was Dwight’s personal blog, and the

other an adult kickball league website. After losing his websites, Dwight made clear his admonition

to others who had not backed-up their data [107]:

“The main point that I want to get across is this: BACK UP YOUR DATA! The shock
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TABLE 11: Repository request methods and limits.

Web repository Request method Daily limit
Internet Archive WUI 1000
Google Google API or WUI 1000
Yahoo Yahoo API 5000
Live Search Live Search API 10,000

of losing a year’s worth of blood and sweat (regarding the code that powered [my site])

still has yet to fully sink in.”

Although Warrick was not able to recover all of Dwight’s blog, he expressed some relief at getting

back something he thought was forever lost:

“It’s unclear how many posts never got recovered with Warrick in the first place. Eye-

balling it, I’d say I have at least 80% of my posts. And you know what? I’ll take

that.”

These were the first two websites reconstructed by someone outside of ODU.

Warrick continued to be improved, and instructions for downloading, installing and running

Warrick were expanded, but the author continued to receive emails and phone calls from individuals

who were not technically inclined and needed help recovering their lost websites. An online queueing

system named Brass1 was finally developed with the help of Amine Benjelloun, a graduate student

at Old Dominion University. An easy-to-use front end was developed to make the reconstruction

process simple. Brass went online on July 2, 2007, with five nodes running reconstruction jobs.

More details about Brass will be discussed in Section 5.

2 IMPLEMENTATION

Warrick was written in the Perl programming language because of its powerful string manipulation

capabilities and the availability of a wide-range of libraries on the CPAN network (www.cpan.org).

Warrick requires a complete Perl 5 installation along with a few supplemental libraries. Anyone can

download and install Warrick from http://warrick.cs.odu.edu/, and the code may be modified

and freely distributed since it is licensed under the GNU General Public License.

Warrick uses the four repositories IA, Google, Live and Yahoo. The search engine APIs are

used, and page-scraping the web user interface (WUI) is used for IA. Warrick also will page-scrape

the WUI for Google if the Warrick user does not have a Google API key (keys do not need to be

obtained for using the Live and Yahoo APIs). The search engine APIs allow only a limited number

of daily queries from distinct IP addresses or from certain keys which Warrick must adhere to (Table

11). Although IA does not publish a request limit, Warrick does not make more than 1000 requests

per day per IP address, the same limit used by the Google API.
1Brass is Warrick’s boss on the CSI television show.
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3 OPERATION

Warrick follows the algorithm presented in Figure 3 to reconstruct a website. A starting URL is

supplied by the user which is typically the root URL for the website (e.g., http://foo.edu/ or

http://foo.edu/~bar/).

If the Knowledgeable or Exhaustive policy is being used, Warrick issues lister queries to each

repository using the base URL (crawling policies were introduced in Section 4 of the previous chap-

ter). Lister queries must be performed on two different interfaces since all three of the flat repositories

(search engines) use separate interfaces for accessing their images. The returned URLs are canoni-

calized and saved for later getResource queries, and if the Exhaustive policy is being used, the URLs

are placed on the frontier. Note that since search engines will not return more than 1000 results,

Warrick must keep track of repositories that have potentially more resources stored in them. This

information is used later when determining if a repository should be queried for a resource.

When recovering each URL in the frontier, Warrick must initially decide if the URL is pointing to

an image or not because of the separate image interfaces for the flat repositories. Warrick examines

the ending of the URL, and if it ends with a known image type (e.g., .gif, .jpg, .png, etc.) then the

image interfaces are queried. Taking advantage of the fact that IA stores canonical images and the

datestamp of images cannot be obtained from the flat repositories, IA is queried first, and if the

image is not found, then each flat repository is queried until one image is found.

If a non-image resource is being recovered, the resource is downloaded from each repository since

the crawl date of the resource is usually only found by examining the HTML that the repositories

add to the heading of the cached resource. Warrick uses an optimization that is not shown in the

algorithm: since IA is several months out-of-date, the search engine caches are searched first for

HTML resources since they are more likely to have the most recent version of an HTML resource

and since they all store the canonical HTML resource. But when non-HTML resources are being

searched, IA is examined first since it contains canonical resources for PDFs, Office documents, etc.

This optimization may save a significant number of queries.

Once the canonical or most recent version of the resource is found, it is saved using a filename

and path that mirrors the URL. For example, the resource http://foo.org/bar/hello.html is

stored as foo.org/bar/hello.html. HTML resources are examined for links to other potentially

missing resources from the website, and after being canonicalized, URLs which have not been visited

(and are not already in the frontier) are added to the frontier. If any of the repository query limits

have been exceeded, Warrick sleeps for 24 hours. Once it awakens, Warrick has another full set of

queries to exhaust.

Warrick creates a reconstruction summary file that lists the URLs that were successfully or

unsuccessfully recovered. For each resource the following data (if available) is recorded:

1. Timestamp – When the resource was recovered.

2. URL – The resource’s canonical URL on the Web.

3. MIME type – The MIME type returned from the web repository when downloading the resource.

4. Filename – The full path to the saved resource.
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SeedUrls ← StartingUrl
RepoSet ← {IA,Google,Live,Yahoo}
// Perform lister queries
if Using(KnowledgeablePolicy) or Using(ExhaustivePolicy) then

foreach Repo r in RepoSet do
StoredUrls ← getAllUris(site)
if repoUriLimitExceeded(r) then additionalUrisr ← true

end
end
if Using(ExhaustivePolicy) then SeedUrls ← SeedUrls ∪ StoredUrls
Frontier ← SeedUrls
foreach URL u in Frontier do

FoundResources ← ∅
if isImageUrl(u) then

// Find an image in one repository
foreach Repo r in RepoSet do

if u ∈ StoredUrls(r) or additionalUrisr then
image ← getResource(r,u)
if image is found then

FoundResources ← image
break

end
end

end
else

// Search all four repositories for non-image resource
foreach Repo r in RepoSet do

if u ∈ StoredUrls(r) or additionalUrisr then
resource ← getResource(r,u)
date ← extractStoredDate(resource)
FoundResources ← FoundResources ∪ (resource,date)

end
end

end
// Find the most recent or canonical resource
resource ← chooseBestResource(FoundResources)
SaveResource(resource)
VisitedUrls ← VisitedUrls ∪ u
if htmlResource(resource) then Frontier ← Frontier ∪ getUnvistedUrls(resource)
if anyRepoQueryLimitExceeded(RepoSet) then Sleep24Hours

end

FIG. 26: Warrick’s algorithm for reconstructing a website.
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2006-11-17 10:23:04

http://foo.edu/~joe/

text/html

foo.edu/~joe/index.html

yahoo

2006-11-15

google:2006-08-11,live:2006-07-20

2006-11-17 10:23:08

http://foo.edu/~joe/images/hello.gif

MISSING

2006-11-17 10:23:13

http://foo.edu/~joe/resume.pdf

text/html

foo.edu/~joe/resume.pdf

google

2006-11-09

yahoo:2006-10-02

2006-11-17 10:23:29

http://foo.edu/~joe/styles.css

text/css

foo.edu/~joe/styles.css

ia

2005-02-14

FIG. 27: Reconstruction summary file.

5. Web repository – The repository from which the canonical or most recent resource was saved.

6. Stored date – The date the resource was crawled on the Web (the datestamp from the reposi-

tory).

7. Other repositories – Other repositories that had a stored version of the resource.

An example is shown in Figure 27 (although each entry is separated by a tab in the file, it is displayed

on separate lines for clarity). Note that the MIME type recorded in the summary file may not always

match up with the original resource’s MIME type. For example, if a PDF is recovered from a search

engine cache as shown in the example, the MIME type is ‘text/html’ since it was recovered as HTML

from the repository.

4 RUNNING

Warrick may be downloaded and ran from the command line on any operating system with a valid

Perl 5 installation. Warrick may also be accessed through the web interface of the queueing system

which is discussed in the next section. The queueing system runs Warrick from the command line

using the proper switches.

Warrick uses many of the same switches as the popular GNU Wget web crawler [65]. A complete

list of switches is given in Appendix A, but some of the commonly used switches are discussed in

this section. The following is a typical invocation:

warrick.pl --recursive --debug --output-file log.txt http://foo.edu/~joe/
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The --recursive switch tells Warrick to recursively look for more links to recover from recovered

HTML pages. If the switch is not supplied, only the single URL will be recovered. The --debug

switch turns on debugging output, and the --output-file switch indicates all output should be

diverted to the output file log.txt. This can be useful for monitoring long reconstruction jobs. The

ending URL is the root page to the website being reconstructed. Warrick will by default only recover

resources that are under the root page and match the given URL. So only URLs matching http:

//foo.edu/~joe/* will be recovered in this example. This matches the organizational structure of

most websites.

The default crawling policy used by Warrick is the Knowledgeable policy. The Näıve policy can be

set using --no-lister-queries and --complete for Exhaustive. Warrick can be ran to supplement

a previous reconstruction using --no-clobber; this is useful since IA may add additional resources

to their archive each month which were not previously accessible.

Reconstructions may also be limited to certain repositories. For example, if the website to recover

has been lost for years and is only in the Internet Archive, the --web-repo switch could be used to

limit the reconstruction to only IA. Additionally the --date-range could be used to limit the date

range of recovered resources. The following command indicates only IA should be used, and only

resources archived between February 1, 2004 and August 8, 2005 should be recovered:

warrick.pl --recursive --web-repo ia

--date-range 2004-02-01:2005-08-31 http://www.cs.odu.edu/

After a reconstruction has completed and all resources have been saved to disk, the website may

not be immediately browsable for two reasons: 1) the recovered resources contain links to where the

resources used to reside on the Web (and currently do not), and 2) some resources may have file

extensions that do not match the content of the file (e.g., a recovered PDF recovered from a search

engine cache is in HTML format, but a browser will attempt to read it as a PDF document if it has

a .pdf extension).

Warrick may be ran with two switches to rectify these problems. The --convert-links switch

will convert all absolute URLs to relative URLs. For example, the absolute URL pointing to http:

//foo.edu/~joe/car.html will be converted to point to the recovered car.html file, “../car.html”.

The --view-local switch will make a reconstructed website completely browsable off-line. This

option does four things: 1) converts all absolute links to relative links (just like the --convert-links

switch), 2) appends “.html” to all filenames of HTML resources that do not already have a .htm or

.html extension, 3) converts all ‘?’ characters in filenames into dashes, and 4) changes all links in

all HTML resources to point to the newly renamed files.

5 BRASS

5.1 User Interface

Nontechnical users or those who prefer not to download, install and learn Warrick’s many command-

line switches may use Brass, a queueing system developed to run Warrick on a network of machines

[110]. When a user wants to recover a lost website with Brass, they are presented with the screen

shown in Figure 28. The user’s email address is requested so the user can verify the job through
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FIG. 28: Screenshot of Brass’s submit job interface.

email (so automated attempts to start jobs are thwarted) and so the user can be notified when the

website has been fully recovered. The user must also provide the base URL of the lost website and

indicate if just the single resource residing at the URL should be recovered or the entire website.

Next the user selects which web repositories should be used in the recovery. A date range can be

given if IA is selected by itself, otherwise the most recent version of resources from IA is selected by

Warrick.

The user may also indicate if the resources should be stored using Windows file-naming conven-

tions. Windows does not allow certain characters like ‘?’, ‘—’ and ’:’ in filenames, so when they are

encountered in a URL, they are converted to acceptable characters like ‘@’, ‘%7C’ and ‘+’ when

used to name the file, respectively.

Once the user submits the job, Brass assigns a unique key to the job (using an MD5 hash of the

email address and the timestamp when the job was submitted) and sends a job verification email to

the user. Once the user replies to the verification email, the job is placed in a queue to be executed

once a free machine is available. The job may take several days to process if there are many jobs

in front of it or if recovering a very large website. The user may check on the status of submitted

jobs at any time (Figure 29). Once the job completes, an email is sent to the user with a link,

allowing the user to download the completed reconstruction as a gzipped tar file or zip file. Periodic

reminders are sent to the user for several weeks if the job is not picked up.
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FIG. 29: User checking status of current job.

5.2 Administrative Interface

The Brass administrative interface (Figure 30) allows the admin to view jobs in their various states.

A progress bar is used to show the status of processing jobs using the following equation:

Progress =
processed URLs

processed URLs + queued URLs
(19)

The admin screen is updated when the page is refreshed manually or by turning on the auto-refresh.

The admin can move jobs in the queue, manually start jobs on specific machines, delete jobs and

add new worker machines. A history is kept of all jobs and is accessible through the browser or by

downloading an XML file.

5.3 Architecture

As illustrated in the administrative interface, a job moves through four states in Brass:

1. Pending : The job has been submitted by the user (Figure 28), but has not yet been confirmed

via email. After ten days, pending jobs are removed from the system.

2. Queued : The job has been confirmed by the user and is scheduled to run. Although the admin-

istrator can reposition jobs in the queue, normally they are scheduled to run in the order they

were confirmed.
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FIG. 30: Screenshot of Brass’s administrative interface.
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<job>

<key>uniquekey</key>

<fname>John</fname>

<lname>Smith</lname>

<email>john@hotmail.com</email>

<commandLine>--recursive --debug --complete

--output-file recondir/uniquekey/log.txt

--target-directory recondir/uniquekey/

--google-api http://my-lost-website.com/

</commandLine>

<submitDate>2007-04-12 09:41:53</submitDate>

<status>processing</status>

<reminderToConfirm>1</reminderToConfirm>

<lastConfReminder>2007-04-12 09:45:26</lastConfReminder>

<assignDate>2007-04-13</assignDate>

<processId>124</processId>

<urlsProcessed>462</urlsProcessed>

<urlsRecovered>390</urlsRecovered>

<reminderToPickup>0</reminderToPickup>

<lastPickupReminder />

<pickupDate />

<pickedUp>no</pickedUp>

</job>

FIG. 31: Job information stored in XML.

3. Processing : The job is currently running. Due to the query limitations discussed in Section 2,

large jobs can remain in this state for several days.

4. Completed : The job is finished running and is ready for pick-up by the user (in the form of a

zipped file or gzipped tar file). An email reminder is sent periodically, and if the job is not picked

up in several weeks, it is deleted from the system.

Jobs are stored in an XML file on the web server; an example is shown in Figure 31. The Apache

Tomcat web server [6] runs on the primary web server and each worker machine. When a job is to be

started on a free machine, Brass performs an HTTP GET request with the proper parameters to the

Tomcat instance on the target machine. The GET request starts the reconstruction controller (RC),

a script which launches Warrick, zips up the recovered files when Warrick completes and finally

makes an HTTP GET request back to the primary web server. This in turn triggers an email to be

sent to the user and changes the job’s status to complete.

Each instance of Warrick uses the Exhaustive policy when recovering a complete website and

outputs its current status to a log file. For simplicity, Brass and all the worker machines share a

common filesystem, so checking on the current status of each Warrick process can be done from the

primary web server by examining the log files which all reside in the same networked directory. The

log files are accessible to the admin via the web browser for potential trouble-shooting.
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TABLE 12: Brass usage statistics from 2007.

Month Completed Jobs Resources Recovered
July 118 119,596
August 75 83,435
September 132 107,014
Average 108 103,348

6 USAGE STATISTICS

Before Brass was deployed in early July, Warrick users had to download and run Warrick on their

own systems. From February 1, 2006 to August 1, 2007, Warrick was downloaded approximately

2500 times (not including automated bots and crawlers like Google). Warrick does not communicate

its usage information back to ODU, so that data is not available. However, Brass usage statistics

have been kept since its deployment in early July and is summarized in Table 12. In the past three

months, Warrick has been used to recover a total of 325 websites composed of 310,045 resources. For

8.3% of the jobs submitted, only a single resource was requested for recovery instead of a complete

website. Of those completed jobs that recovered at least one resource, 10.7% were not picked-up by

the user. In these cases, the users may have been able to recover the lost websites another way or

lost interest in recovering the websites.

Table 13 gives descriptive statistics on the number of URLs that were discovered by crawling

the recovered HTML pages and the number of those URLs that were recovered. The table also

summarizes the number of days that it took for Warrick to complete the submitted jobs. On average,

38.2% of the websites’ resources were recovered. The percent jumps to 47.2% if only considering

websites with at least one recovered resource. The distribution of recovered resources per website is

shown in Figure 32. For 19.7% of the jobs, none of the resources could be recovered. Less than 10%

of the resources were recovered for a quarter of the jobs (26.8%), but a small minority (12.6%) of

jobs have an 80% recovery rate or better.

In the next chapter, the percentage of recovered resources in all three experiments is significantly

higher than the 38% seen here. As will be demonstrated in the next chapter (Section 5.3), web

resources that are not well-connected in the web graph are less likely to be reconstructed from the

WI. Perhaps the websites being reconstructed by Brass were not well-connected. In the experiments

in the next chapter, URLs that were blocked by the robots exclusion protocol were not considered,

but the real usage data presented here does not account for these blocked URLs; this likely accounts

for a significant number of missing resources. Additionally, some website URLs may not have been

typed correctly and therefore did not point to once valid websites. Some URLs may have been

spam. It is also impossible to tell if the resources that were not recovered were as important as those

that were found; possibly the resources that were found were the most significant and important

resources.

The distribution of reconstructed websites by top level domain (TLD) is shown in Figure 33

along with the percent of recovered resources for each TLD. Websites with .com TLDs make up
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TABLE 13: Brass recovery summary.

Ave Min Max Std
URLs discovered 3218.8 0 196,449 14226.5
URLs recovered 954.0 0 19,872 3085.2
Days to complete 0.86 0 26 3.26
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FIG. 32: Distribution of websites by percentage of recovered resources.

approximately half of all reconstructions with country code TLDs coming in second, making up a

quarter of all jobs. Recovery success differs some by TLD. Websites with a .net TLD experienced

nearly a 50% recovery rate compared to only 30% for the five .edu sites that were reconstructed.

As will be shown in the next chapter (Section 5.2), websites from the .edu domain are much more

reconstructable than websites from other domains, but there are numerous other factors that account

for recovery success, not just TLD.

All four repositories were used in a majority of the reconstructions (Table 14), but IA contributed

significantly more resources per reconstruction than the other three repositories. In 20% of the

reconstructions, IA is the only contributor. This is not surprising considering IA is the only deep

archive and therefore the only source of web resources that have been lost for a considerable amount

of time. And since the Exhaustive policy is used by Brass, many old URLs that may no longer be a

part of the lost website are recovered from IA. An experiment from the next chapter (Section 5.2)

finds IA’s contribution to be significantly lower when reconstructing websites that have not yet been

lost.

7 CONCLUSIONS

Warrick can be used to reconstruct a website from the WI and can perform post-processing on the

recovered files to make them browsable off-line. The development of Brass has allowed Warrick to be
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FIG. 33: Brass recovered websites by TLD.

TABLE 14: Repository use, contributions and requests.

Used in recons Contribution Requests per recon (ave)
IA 99.7% 84.8% 2150.4
Google 96.9% 6.8% 657.7
Live 96.9% 3.3% 131.3
Yahoo 96.9% 5.1% 819.4

far more accessible to the general public; usage statistics show that the public is currently recovering

108 websites a month on average and recovering an average of 38% of their resources. Although

this percentage is not very high, it is not known if the missing portions are as significant as the

portions that were found or if websites that were not recoverable were simply misspelled or spam. In

order to gauge just how effective Warrick is at reconstructing websites, a more rigorous evaluation is

necessary than just examining usage statistics. The next chapter introduces an evaluation method for

quantifying website reconstruction success and investigates how effective Warrick is at reconstructing

a variety of websites.
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CHAPTER VII

EVALUATING LAZY PRESERVATION

The web-repository crawler Warrick, introduced in the previous chapter, can be used to reconstruct

websites from the WI. But how effectively can a “typical” website be reconstructed? This is a

difficult question to answer for several reasons. First, it is not always possible to know how much of

a website was really recovered when the original is truly lost; as mentioned in the previous chapter,

the first individual to use Warrick was unsure how much of his blog was really recovered. Second,

reconstructing synthetic websites like those developed in Chapter IV and later in Chapter VIII might

be detected as spam and treated very differently than “real” websites. And third, reconstructing

websites which have not yet been lost may produce a more favorable outcome since the search

engine caches would not have yet purged any missing web resources. Despite the potential for overly

optimistic results, the strategy used to evaluate website reconstructions in this chapter uses real

websites which have not yet been lost.

This chapter attempts to gauge the effectiveness website reconstruction using three reconstruc-

tions experiments. The first experiment used Warrick to reconstruct 24 hand-picked websites that

varied in size, structure and subject matter. A follow-up experiment reconstructed the same 24

websites using the three crawling policies introduced in Chapter V, and the policies were evaluated

in terms of the recovered resources. Finally, a large-scale experiment was performed where 300 ran-

domly selected websites were reconstructed over a three month period. From this final experiment,

the factors contributing most to successful reconstructions were found.

1 WEBSITE DEFINITIONS

1.1 Website Definition

According to the W3C’s Web Characterization Terminology and Definition Sheet [94], a website is

defined as:

A collection of interlinked Web pages, including a host page, residing at the same network

location. “Interlinked” is understood to mean that any of a Web site’s constituent Web

pages can be accessed by following a sequence of references beginning at the site’s host

page; spanning zero, one or more Web pages located at the same site; and ending at the

Web page in question.

A web page is defined as the “collection of information, consisting of one or more Web resources,

intended to be rendered simultaneously, and identified by a single URI.” By these definitions, the

Faculty web page http://www.cs.odu.edu/faculty.shtml is part of the Computer Science (CS)

Department’s website since a link from the site’s host page at http://www.cs.odu.edu/ points

to it and since the page is accessible from the same network location (a web server hosted by

the department). The style sheets, JavaScripts, images and other resources required to render the

Faculty page are also part of the web page and therefore the website.
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However, Michael Nelson’s website at http://www.cs.odu.edu/~mln/ may be judged by some

to be a different website than the CS department’s since it is published and maintained by a different

entity than the CS website. Nelson’s website is called a subsite by the W3C’s definition, but for

simplicity, it will be called a website in this dissertation. The curatorial aspects of a website make

it possible to distinguish between websites that share the same domain name but are housed on

different hosts. For example, the Warrick website housed at http://warrick.cs.odu.edu/ can be

considered a separate website from the CS website.

The W3C’s definition of website does not take into account those pages that are dynamically

generated and are not linked directly to other pages of the site. These deep web pages which are

often invisible to a web crawler may be discovered by the WI using other methods as discussed

earlier in Chapter II. The definition of website in this dissertation includes these deep web resources

which can be discovered from web repositories using lister queries.

1.2 Lost Websites

A lost website is one that is no longer accessible from its original location and is not being mirrored

at any other location1. Such a website could be in one of several categories:

• Unresponsive server – The server is not responding to any HTTP requests. This could happen

if the web server was accidentally shut down, hacked or was the victim of a denial-of-service attack.

• Missing content – The content of the website is no longer accessible at the same address, yet the

website appears to be under the same ownership. The content could have been removed because

it was no longer needed or relevant, or the website has been reorganized. An example of a website

whose content is no longer accessible is TechLocker.com, shown in Figure 35. Although the site is

still accessible from its original URL, the contents have been lost; the site is now redirecting users

to www.campusemporium.com.

• Expired domain name – The domain name lease for the website has expired and is waiting to

be re-purchased. Like the previous category, the content is no longer accessible. Figure 36 shows

how the defunct website of former Congressman Mark Foley (www.markfoley.com) is now being

“parked... courtesy of GoDaddy.com,” a domain name registrar.

• Hijacked – The domain name for the website has expired and been claimed by another entity.

An example of a hijacked domain is given in Figure 34. The original DL website was lost in 2001

to a pornographer. The website was later used for gambling in 2003 and a search portal in 2004.

1.3 Reconstructed Websites

A reconstructed website is the collection of recovered resources that share the same URIs as

the resources from a lost website or from some previous version of the lost website. The recovered

resources may be equivalent to, or very different from, the lost resources. For websites that are

composed of static files, recovered resources would be equivalent to the files that were lost. For sites

produced dynamically using CGI, PHP, etc., the recovered resources would match the client’s view
1A notable log of lost websites is maintained by Steve Baldwin at http://www.disobey.com/ghostsites/.
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FIG. 34: IA versions of http://www.dl00.org/.

FIG. 35: The website www.techlocker.com remains accessible, but the previous content is lost.
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FIG. 36: The domain name markfoley.com is awaiting re-purchase.

 
 

A A 

D

B C 

E F G

B’ C’ 

E

F

added 
  20% R L changed

33% 

identical 
50% 

missing
17%

FIG. 37: Lost website (left), reconstructed website (center), and reconstruction diagram (right).

of the resources and would be useful to the webmaster in rebuilding the server-side components.

Recovery of the server-side components with lazy preservation is discussed in Chapter VIII.

A reconstructed website may be made accessible once again by re-hosting it at the same URL

it was previously available at or a new location. From anecdotal evidence collected by the author,

websites that are reconstructed by the owner of the lost site are often made accessible once again at

the same URL. Websites that are reconstructed by a third party are sometimes hosted at different

locations since access to the original domain name is not always possible. The reconstructed website

may also be used only for internal purposes. For example, a researcher who reconstructs an old

website may want to only view its contents locally.

2 RECONSTRUCTION MEASUREMENTS

2.1 Quantifying a Reconstruction

To quantify the difference between a lost website (L) and a reconstructed website (R), all resources

from L and R are matched according to their uniquely identifying URIs and placed into one of four

categories. Each resource li in L and ri in R that shares the same URI is categorized as identical
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(ri is byte-for-byte identical to li) or changed (ri is not identical to li). All resources in L that do

not share a URI with any resource in R are categorized missing, and those resources in R that do

not share a URI with any resource in L are added. The union of L and R would be equivalent to

the intersection of L and R if R was perfectly reconstructed from the WI, that is, it had no missing

or added resources. Note that although the links connecting these resources are often important for

finding them, they are not specifically evaluated in this classification scheme.

The four classifications are used to assign a three dimensional recovery vector (r) in the form

of (changed, missing, added) to each resource: (0,0,0) for identical resources, (1,0,0) for changed

resources, (0,1,0) for missing and (0,0,1) for added. A difference vector is then calculated as a

measure of change between the lost website L and the reconstructed website R by summing the

recovery vectors and normalizing them like so:

difference(L, R) =
(

rc

|L|
,
rm

|L|
,

ra

|R|

)
(20)

The difference vector is intuitively the percentage of resources that were changed, missing and added.

A website that was reconstructed with all identical resources (a perfect reconstruction) would have

a difference vector of (0,0,0). A completely unrecoverable website would have a difference vector of

(0,1,0).

To illustrate, the left side of Figure 37 shows a web graph for some lost website L where each

node represents a resource (HTML, PDF, image, etc.), and each directed edge is a hyperlink or

reference from one resource to another. Suppose L was lost and reconstructed forming the website

W represented in the center of Figure 37. The resources A, G and E were reconstructed and are

identical to their lost versions, but an older version of B was found (B’) that pointed to G, a resource

that does not currently exist in R. Since B’ does not reference D, D may not be recovered unless

unless a lister query (defined in Section 3.5 of Chapter III) revealed its existence. An older version

of C was found, and although it still references F, F could not be found in any web repository. For

Figure 37, the difference vector is (2/6, 1/6, 1/5) = (0.333, 0.167, 0.200).

The difference vector for a reconstructed website can be illustrated as a reconstruction dia-

gram as shown on the right side of Figure 37. The changed, identical and missing resources form

the core of the reconstructed website. The dark gray portion of the core grows as the percentage of

changed resource increases. The hole in the center of the core grows as the percentage of missing

resources increases. The added resources appear as crust around the core. This representation is

useful for compactly summarizing a reconstruction.

2.2 Computing Success

When quantifying how successful a reconstruction is, several factors must be considered. A simple

definition of success would be the percent of resources that were recovered (1− dm). But if some of

the recovered resources were changed in such a way to make them less useful to the recoverer (e.g.,

a thumbnail was recovered instead of the full-sized image), some type of penalty to the changed

resources (dc) should be assessed. A penalty may also be assigned if the reconstruction resulted in

many added resources (da) that hindered the recoverer’s ability to separate the “important” parts
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of the website from the useless parts. By assigning penalties to the components of the difference

vector, a reconstruction success level can be computed that matches one’s intuitive notion of success.

To determine reconstruction success, a penalty adjustment may be applied to each individual

recovery vector or to the final difference vector. The penalty adjustment is composed of weights

(Pc, Pm, Pa) which are defined over the interval of [0,1] with 0 being no penalty and 1 being the

maximum penalty. The weights can be adjusted depending upon the level of importance the recover

wants to assign to resources in each recovery status category.

For example, suppose a website of mostly PDFs was lost, but 75% of the PDFs were recovered

in an HTMLized format. A weight of 1 may be assigned to Pm to give the maximum penalty for not

being able to recover the other 25% of the PDFs. A weight of 0.5 may be assigned to Pc since the

text of the PDFs that were recovered were helpful, but the important PDF formatting of the text

was lost. Another penalty adjustment of 1 for Pc could be used for those lost PDFs that contained

only images since none of the images could be recovered from the HTMLized PDFs. Finally, a

penalty of 0.2 could be assigned to Pa if the added resources caused the reconstruction to take a

significantly longer amount of time or if the added resources were not useful to the recoverer or

caused the recoverer additional time in locating the resources that were important.

Once the penalty adjustment weights have been selected, they can be applied individually to

each recovery vector before computing the difference vector:

r = (rc · Pc, rm · Pm, ra · Pa) (21)

Alternatively, a single penalty adjustment could be applied to the final difference vector:

difference(L, R) =
(

rc · Pc

|L|
,
rm · Pm

|L|
,
ra · Pa

|R|

)
(22)

The successful of the reconstruction is then the L1 norm (the sum of the vector components) of

the difference vector (dc, dm, da) after applying the penalty adjustment:

success = dc + dm + da (23)

The closer the value of success is to zero, the more successful the reconstruction. Note that dc + dm

is always ≤ 1, and dc + dm + da is always ≤ 2.

Five general levels of success have been defined in Table 15 in increasing order of laxity by

applying various penalty adjustments to the final difference vector and relaxing how some recovered

resources are categorized.

In s3, an algorithm that computes similarity is needed. Shingling was used in this chapter since it

takes into account the order of words between two textual resources. For clarity, textual resources

are those resources with a MIME type of ‘text/*’ or those with MIME types associated with PDF,

PostScript or Microsoft Office documents. Resources are classified as ‘similar’ if the crawled and

recovered resources share at least 75% of their shingles of size 10 (after removing HTML markup).

The s5 category is useful when the Knowledgeable policy is used (crawling policies were intro-

duced in Chapter V). Otherwise it is equivalent to the s4 category. To calculate s5, Warrick must be
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TABLE 15: General levels of reconstruction success.

Success Level Penalties Description

s1 (1,1,1) Missing, changed and added are equally undesirable.

s2 (1,1,0)
Missing and changed are equally undesirable, but added
resources are not.

s3 (1,1,0)
The definition of changed is relaxed by removing textual
resources that are ‘similar’ from changed.

s4 (0,1,0)
Missing resources are undesirable, but changed and
added are not.

s5 (0,1,0)
The definition of missing is relaxed by removing poten-
tially recoverable resources.

configured to track those resources that are known to be stored in at least one repository but were

not recovered due to the selection algorithm of the Knowledgeable policy. Therefore if a resource

could potentially be recovered, it could be removed from the ‘missing’ classification.

The s5 level is the most generous definition of success since it does not penalize for changed

resources, and it eliminates the bias of using the Knowledgeable policy in the reconstructions. The

value 1 - s5 is the percentage of recovered resources for a website, regardless if the resource was

changed in some way.

2.3 Comparing Live Websites

In most cases, the lost website is not available to compare with the reconstructed website. Therefore,

when evaluating reconstruction success, it is more practical to select a website that is live on the Web

and reconstruct it as if it were suddenly lost. A snapshot of the website can be obtained by crawling

it, and then a snapshot of the reconstructed website can be taken from the WI by crawling it with a

web-repository crawler. Figure 38 illustrates taking a snapshot of a website by web crawling (left).

The same website is reconstructed from the WI (right), and the crawled and recovered resources are

then compared and categorized (bottom) using their URIs as discussed in Section 2.1.

The disadvantage of using live websites for reconstruction experiments is that it does not take

into account the passage of time and the loss of resources from search engine caches. If a website

was reconstructed a week after it was lost, for example, many of its resources might no longer be

accessible in the search engine caches; as was demonstrated in Chapter IV, search engines are often

quick to purge cached resources once they are detected to no longer be accessible on the Web.

3 INITIAL RECONSTRUCTION EXPERIMENT

3.1 Methodology

To gauge the effectiveness of lazy preservation for website reconstruction, an initial experiment

was conducted comparing the snap-shot of 24 live websites with their reconstructions. Websites

were selected that were either personally known to the author or randomly sampled from the Open

Directory Project (dmoz.org). Sites that used robots.txt and Adobe Flash [3] exclusively as the
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FIG. 38: Comparing a crawled website (left) to its reconstruction (right).

main interface were avoided. The selected websites were predominantly English, covered a range of

topics, were from a number of top-level domains, and varied in size (8 small (<150 URIs), 8 medium

(150-499 URIs) and 8 large (≥500 URIs) were selected).

In order to see if there was any correlation between a website’s relative importance and its re-

covery success, Google’s PageRank (an integer between 0-10 where 10 is the highest importance)

was manually recorded for the base URL of each website by using the Google Toolbar [67]. Al-

though Google is the only search engine that publicly reports its ‘importance’ measure for a URL,

it is possible other search engines assign similar importance values to the same websites. Google

representatives in the past have reported the PageRank value from the toolbar is several months old

[62], but it is the only importance metric easily available.

In August 2005 all 24 websites were crawled starting at their base URL using the GNU Wget

crawler [65]. All links and references were followed that were in and beneath the base URL, with

no limit to the path depth. This captured all pages, images, style sheets, JavaScripts, etc. that

can be found by a typical web crawler. All exclusions found in robots.txt were honored. For

simplicity, the crawler was restricted to port 80 and did not follow links to other hosts within the

same domain name. So if the base URL for the website was http://www.foo.edu/bar/, only URLs

matching http://www.foo.edu/bar/* were downloaded. The same settings were used by Warrick

when reconstructing the websites.

Immediately after crawling the websites, five different versions of each website were reconstructed

with Warrick: four using each web repository separately and one using all four web repositories

together. The different reconstructions helped to show how effective individual web repositories could

reconstruct a website versus the aggregate of all four web repositories. The Näıve policy was used

for all reconstructions since the Knowledgeable and Exhaustive policies were not yet implemented.

The reconstructions ran on six servers running Solaris, each with their own IP address. This

allowed the limited repository queries to be divided among six machines, thus increasing the speed
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FIG. 39: Recovery success by MIME type.

at which reconstructions could be performed.

3.2 Results

The results of the 24 aggregate reconstructions (using all four web repositories) are shown in Table

16, ordered by percent of recovered URIs. The ‘PR’ column is Google’s PageRank for the root page

of each website at the time of the experiment. For each website, the total number of resources in the

website is shown along with the total number of resources that were recovered and the percentage.

This is equivalent to 1 - s4. Resources are also totalled by three MIME type groups: HTML, images

and other. The difference vector reported for the websites uses the s1 level of success.

The ‘Almost identical’ column of Table 16 shows the percentage of textual resources (e.g., HTML,

PDF, PostScript, Word, PowerPoint, Excel) that were almost identical to the originals. The last

column shows the reconstruction diagram for each website using 1 - s3 (almost identical resources

are moved from ‘Changed’ to ‘Identical’).

Summarizing the results, 68% of the resources were recovered on average (median=72%). For

a quarter of the websites, more than 90% of the original resources were recovered. Of those re-

sources recovered, 30% of them on average were not byte-for-byte identical. A majority (72%) of

the ‘changed’ text-based files were almost identical to the originals (having at least 75% of their

shingles in common). Sixty-seven percent of the 24 websites had obtained additional resources when

reconstructed which accounted for 7% of the total number of resources reconstructed per website.

When all website resources are aggregated together and examined, dynamic pages (those that

contained a ‘?’ in the URL) were significantly less likely to be recovered than resources that did not

have a query string (11% vs. 73%). URLs with a path depth greater than three were also less likely

to be recovered (52% vs. 61%). A chi-square analysis confirms the significance of these findings

(p < .001). There was no correlation between percentage of recovered resources with PageRank or

website size.

The success of recovering resources based on their MIME type is plotted in Figure 39. The

percentage of resources that were recovered from the five different website reconstructions (one
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TABLE 16: Results of initial website reconstructions.

MIME type groupings (orig/recovered)

Website PR Total HTML Images Other
Difference
vector

Recon
diag

Almost
iden-
tical

1. smoky.ccsd.k12.co.us 4
63/27
43%

20/20
100%

23/5
22%

20/2
10%

(0.111,
0.571, 0.000)

100%

2. genesis427.com 2
65/53
82%

10/10
100%

50/40
80%

5/3
60%

(0.662,
0.185, 0.000)

33%

3. englewood.k12.co.us/
schools/clayton

3
68/58
85%

32/29
91%

36/29
81%

0/0
(0.426,
0.147, 0.000)

N/A

4. harding.edu/hr 4
73/47
64%

19/19
100%

25/2
8%

29/26
90%

(0.438,
0.356, 0.145)

83%

5. raitinvestmenttrust.com 4
79/65
82%

24/24
100%

45/33
73%

10/8
80%

(0.089,
0.177, 0.015)

33%

6. mie2005.net 6
89/66
74%

16/15
94%

28/7
25%

45/44
98%

(0.663,
0.258, 0.015)

89%

7. otago.settlers.museum 5
111/48
43%

27/27
100%

82/19
23%

2/2
100%

(0.171,
0.568, 0.020)

40%

8. usamriid.army.mil 7
142/100
70%

38/38
100%

59/19
32%

45/43
96%

(0.585,
0.296, 0.000)

50%

9. searcy.dina.org 5
162/154
95%

96/95
99%

63/56
89%

3/3
100%

(0.111,
0.049, 0.078)

43%

10. cookinclub.com 6
204/187
92%

67/66
99%

136/121
89%

1/0 0%
(0.480,
0.083, 0.307)

100%

11. americancaribbean.com 4
287/152
53%

60/57
95%

222/90
41%

5/5
100%

(0.296,
0.470, 0.000)

100%

12. gltron.org 6
294/221
75%

20/19
95%

213/190
89%

61/12
20%

(0.259,
0.248, 0.005)

90%

13. privacy.getnetwise.org 8
305/163
53%

137/137
100%

48/25
52%

120/1
1%

(0.033,
0.466, 0.201)

70%

14. mypyramid.gov 0
344/193
56%

158/154
97%

141/5
4%

45/34
76%

(0.160,
0.439, 0.000)

32%

15. digitalpreservation.gov 8
414/378
91%

346/329
95%

42/25
60%

26/24
92%

(0.097,
0.087, 0.000)

44%

16. aboutfamouspeople.com 6
432/430
99%

267/267
100%

165/163
99%

0/0
(0.653,
0.005, 0.021)

100%

17. home.alltel.net/bsprowl 0
505/112
22%

173/112
65%

332/0
0%

0/0
(0.012,
0.778, 0.009)

100%

18. dpconline.org 7
552/384
70%

236/227
96%

195/37
19%

121/120
99%

(0.509,
0.304, 0.013)

66%

19. cs.odu.edu/˜pothen 5
640/435
68%

160/151
94%

258/120
47%

222/164
74%

(0.402,
0.320, 0.062)

28%

20. eskimo.com/˜scs 6
719/691
96%

696/669
96%

22/21
95%

1/1
100%

(0.011,
0.039, 0.001)

50%

21. financeprofessor.com 6
817/626
77%

455/404
89%

312/180
58%

50/42
84%

(0.211,
0.234, 0.011)

72%

22. fishingcairns.com.au 5
1152/1070
93%

259/259
100%

890/808
91%

3/3
100%

(0.466,
0.071, 0.000)

95%

23. techlocker.com 4
1216/406
33%

687/149
22%

529/257
49%

0/0
(0.267,
0.666, 0.175)

99%

24. kruderdorfmeister.com 4
1509/128
8%

1298/31
2%

211/97
46%

0/0
(0.056,
0.915, 0.066)

50%
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FIG. 40: Web repositories contributing to each website reconstruction.

using all four web repositories, and four using each web repository individually) are shown along

with the average number of resources making up the 24 crawled (or original) websites. A majority

(92%) of the resources making up the original websites are HTML and images. HTML resources

were far more recoverable than images; 100% of the HTML resources were recovered for 9 of the

websites (38%) using all four web repositories. It is likely fewer images were recovered because MSN

at the time could not be used to recover images, and as the caching experiment revealed (Chapter

IV), images are also much less likely to be cached than other resource types.

Figure 39 emphasizes the importance of using all four web repositories when reconstructing a

website. By just using IA or just using Google alone, many resources were not recovered. This is

further illustrated by Figure 40 which shows the percentage of each web repository’s contribution in

the aggregate reconstructions (sites are ordered by their numbering in Table 16). Although Google

was the largest overall contributor to the website reconstructions (providing 44% of the resources)

they provided none of the resources for site 17 and provided less than 30% of the resources for 9 of

the reconstructions. MSN contributed on average 30% of the resources; IA was third with 19%, and

Yahoo was last with a 7% contribution rate. Yahoo’s poor contribution rate is likely due to their

spotty cache access as exhibited in the caching experiment (Chapter IV) and because Yahoo’s last-

modified datestamps are frequently older than last-cached datestamps (Warrick chooses resources

with the most recent datestamps).

The amount of time and the number of queries required to reconstruct all 24 websites (using all

four repositories) is shown in Figure 41. There is nearly a 1:1 ratio of queries to seconds. Although the

size of the original websites gets larger along the x-axis, the number of resources reconstructed and

the number of resources held in each web repository determine how many queries were performed. In

none of the reconstructions were the daily repository query limits exceeded (see Table 11 in Chapter

VI for a listing of limits).
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FIG. 41: Number of queries performed and time taken to reconstruct websites.

3.3 Discussion

Several lessons were drawn from this initial experiment. First, all four web repositories must be used

to provide the most comprehensive reconstructions; using Google alone or IA alone will not provide

adequate recovery for every website. Second, HTML resources appear to be most recoverable;

images are far less recoverable from the WI. Third, website reconstruction from the WI can be

very effective for many websites, but for others (e.g., kruderdorfmeister.com), it is nearly useless.

Although a correlation was found with dynamic resources and path depth with recoverability, an

experiment sampling far more sites is warranted.

4 CRAWLING POLICIES EXPERIMENT

4.1 Methodology

To better understand how the Näıve, Knowledgeable and Exhaustive crawling policies affect website

reconstructions, another experiment was devised similar to the first. The same 24 websites were

crawled using the same settings (honoring robots.txt, downloading only pages with URIs match-

ing the base URL, etc.). After downloading each website, three concurrent reconstructions were

immediately started using each of the crawling policies. The downloads and reconstructions were

preformed in late February 2006 using the same six servers servers as the previous experiment.

4.2 Results

The downloads and reconstructions took 14 days to complete. Much of the delay was due to running

out of daily requests to IA and Google, the two web repositories with the lowest quota of daily

requests.

The complete results are shown in Tables 17 and 18 ordered by total URIs (number of resources

downloaded). The difference vector and reconstruction diagram are given for each reconstruction

using the three crawling policies.

Website number 1 (www.techlocker.com) went out of business several months before it was

reconstructed and therefore represented a truly “lost” website. The root page no longer had links

to other portions of the website, so downloading the website resulted in only 1 file.
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TABLE 17: Results of crawling-policy website reconstructions (Part 1).

Website URIs Näıve Knowledgeable Exhaustive

1. www.techlocker.com 1
(0.000,
0.000,
0.000)

(0.000,
0.000,
0.000)

(0.000,
0.000,
1.000)

2. www.harding.edu/hr 50
(0.720,
0.220,
0.328)

(0.640,
0.280,
0.163)

(0.620,
0.240,
0.591)

3. www.smoky.ccsd.k12.co.us 57
(0.298,
0.509,
0.000)

(0.298,
0.509,
0.000)

(0.316,
0.491,
0.970)

4. www.genesis427.com 65
(0.508,
0.077,
0.016)

(0.523,
0.077,
0.016)

(0.538,
0.062,
0.500)

5. englewood.k12.co.us/schools/
clayton

77
(0.247,
0.286,
0.000)

(0.247,
0.286,
0.000)

(0.247,
0.286,
0.304)

6. www.raitinvestmenttrust.com 79
(0.228,
0.127,
0.014)

(0.278,
0.253,
0.033)

(0.253,
0.127,
0.859)

7. otago.settlers.museum 120
(0.208,
0.525,
0.017)

(0.208,
0.542,
0.286)

(0.208,
0.533,
0.341)

8. www.usamriid.army.mil 121
(0.397,
0.413,
0.220)

(0.364,
0.512,
0.253)

(0.364,
0.471,
0.880)

9. www.mie2005.net 136
(0.699,
0.199,
0.009)

(0.801,
0.096,
0.000)

(0.801,
0.096,
0.335)

10. searcy.dina.org 164
(0.128,
0.049,
0.071)

(0.128,
0.049,
0.077)

(0.134,
0.037,
0.325)

11. www.cookinclub.com 216
(0.565,
0.037,
0.140)

(0.556,
0.037,
0.148)

(0.560,
0.032,
0.790)

12. www.gltron.org 306
(0.284,
0.180,
0.004)

(0.301,
0.183,
0.035)

(0.301,
0.183,
0.260)

13. privacy.getnetwise.org 326
(0.021,
0.479,
0.306)

(0.092,
0.475,
0.296)

(0.261,
0.307,
0.321)

14. www.americancaribbean.com 329
(0.380,
0.450,
0.005)

(0.368,
0.450,
0.005)

(0.368,
0.450,
0.689)

15. www.eskimo.com/˜scs 357
(0.008,
0.006,
0.508)

(0.008,
0.008,
0.509)

(0.014,
0.006,
0.834)

16. www.digitalpreservation.gov 389
(0.015,
0.946,
0.000)

(0.653,
0.321,
0.612)

(0.643,
0.308,
0.898)

17. www.aboutfamouspeople.com 396
(0.705,
0.005,
0.088)

(0.434,
0.005,
0.086)

(0.419,
0.005,
0.844)

18. home.alltel.net/bsprowl 474
(0.004,
0.654,
0.006)

(0.013,
0.808,
0.000)

(0.055,
0.665,
0.006)
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TABLE 18: Results of crawling-policy website reconstructions (Part 2).

Website URIs Näıve Knowledgeable Exhaustive

19. www.dpconline.org 580
(0.543,
0.209,
0.000)

(0.450,
0.217,
0.032)

(0.452,
0.214,
0.282)

20. www.cs.odu.edu/˜pothen 610
(0.549,
0.067,
0.044)

(0.485,
0.146,
0.048)

(0.480,
0.152,
0.178)

21. www.mypyramid.gov 646
(0.367,
0.327,
0.011)

(0.291,
0.345,
0.002)

(0.291,
0.344,
0.102)

22. www.financeprofessor.com 673
(0.184,
0.165,
0.147)

(0.189,
0.080,
0.069)

(0.215,
0.120,
0.511)

23. www.fishingcairns.com.au 1181
(0.439,
0.025,
0.000)

(0.434,
0.040,
0.000)

(0.411,
0.036,
0.197)

24. www.kruderdorfmeister.com 2503
(0.068,
0.916,
0.000)

(0.068,
0.916,
0.000)

(0.069,
0.914,
0.243)

TABLE 19: Statistics for crawling-policy website reconstructions.

Category Policy Mean Median Std Min/Max

Recovered (%)
N 71.4 79.6 27.5 5.4/100.0
K 72.4 76.5 25.3 8.4/100.0
E 74.7 80.2 23.6 8.6/100.0

Added (%)
N 8.1 1.3 13.3 0.0/50.8
K 11.1 3.4 16.7 0.0/61.2
E 51.1 42.1 30.8 0.6/100.0

Total requests
N 1711.7 1131 1580.5 6/4880
K 710.9 368.5 714.1 48/2412
E 1587.5 941.5 1481.1 180/5220

Efficiency ratio
(all resources)

N 0.16 0.15 0.05 0.07/0.27
K 0.41 0.39 0.14 0.21/0.67
E 0.49 0.48 0.10 0.29/0.65

Efficiency ratio
(excluding
added)

N 0.15 0.15 0.06 0.04/0.27
K 0.37 0.35 0.15 0.02/0.64
E 0.22 0.23 0.14 0.00/0.50
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Table 19 contains the descriptive statistics of several important factors of the website recon-

structions. The percentage of recovered resources are for those resources that share the same URI

as resources in the downloaded website; this does not include the number of ‘added’ resources.

Although the Exhaustive policy performed moderately better, all three crawling policies generally

recovered the same number of resources. The Näıve policy performed significantly worse than the

other policies only once: when reconstructing site 16 (www.digitalpreservation.gov). This was

due to a recent website redesign which had not yet been fully captured in the search engine caches.

The percentage of resources categorized as ‘added’ for the Exhaustive policy (51.1%) averaged

40% more than the Knowledgeable policy and 43% more than the Näıve policy. As expected, the

Exhaustive policy recovered significantly more added resources because every resource stored in

every web repository was recovered regardless if a link was found to the resource or not.

Table 19 also shows the total number of repository requests issued for each website reconstruction.

The number of requests per reconstruction varied widely, but the Knowledgeable policy (710.9)

averaged less than half the number of requests as the Exhaustive (1587.5) and Näıve policies (1711.7).

A better gauge for comparing the crawling policies is to examine each website reconstruction’s

efficiency ratio:

efficiency ratio =
total number of recovered resources

total number of issued repository requests
(24)

The most efficient reconstruction would result in one request per recovered resource, a 1.0 efficiency

ratio.

The efficiency ratio for each website reconstruction is plotted in the top graph of Figure 42, and

the distribution is plotted at the bottom. It is also useful to examine the efficiency ratios when added

resources are not considered. Figure 43 shows the efficiency ratio (top) and distribution (bottom)

for each crawling policy when added resources are not considered in the total recovered resources.

The efficiency ratio descriptive statistics are shown at the bottom of Table 19.

The efficiency ratios were grouped into pairs and a Wilcoxon Matched-Pairs Signed Ranks test

was executed on each of the pairs. The tests revealed statistically significant differences (p < 0.001)

between the crawling policies when all resources are included in the efficiency ratio. As expected, the

Näıve policy was least efficient at recovering resources because the crawler did not know in advance

which resources a web repository had stored. The Exhaustive policy was shown to be slightly more

efficient than the Knowledgeable policy, likely because lister queries produce ‘false positives’ for the

Knowledgeable policy that are not recovered.

When the efficiency ratios were considered without added resources, there continued to exist

strong, statistically significant differences (p < 0.001) between the crawling policies with the ex-

ception of the (Exhaustive, Näıve) pair which still maintained a low p value (p < 0.05). When

added resources were excluded, the Knowledgeable policy performed the best. The Exhaustive pol-

icy showed a 45% loss in the mean when compared to the efficiency ratio with all resources included.

The Näıve policy showed no appreciable difference.
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FIG. 42: Top: Efficiency ratio = total number of recovered resources divided by total number of
repository requests. Bottom: Distribution of efficiency ratios where bin 0.1 corresponds to ratios
with values between 0 and 0.1, etc.
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4.3 TechLocker Website

As noted earlier, the TechLocker website had apparently been closed down several months before

this experiment was conducted. Using the Näıve and Knowledgeable policies, only a single HTML

resource could be recovered. The Exhaustive policy recovered 2244 resources with 1952 of them

coming from IA and 292 coming from Google. MSN and Yahoo had nothing cached. The Google

resources were composed of 161 images and 131 HTML resources. Although the cached date of the

images from Google were not available, the HTML resources had been cached between January and

September 2005, approximately five months to one year before the experiment had been conducted.

The original URLs of the recovered resources were accessed to see if they still resided on the

TechLocker web server. Each request consistently resulted in an HTTP 404 (not found) response.

It may be surprising to some that resources over one year in age remain in the Google cache, but as

the previous caching experiment from Chapter IV has demonstrated, Google may make resources

available in their cache long after the resources have been removed from a website. This behavior

has not been observed for MSN or Yahoo.

4.4 Discussion

The reconstruction experiments reveals several important characteristics about the three crawling

policies. The Näıve policy will recover nearly as many non-added resources as the Knowledgeable

and Exhaustive policies, but at a huge expense in increased repository requests. Therefore, the

Näıve policy should be avoided if all the web repositories support lister queries.

The Exhaustive policy will regularly recover significantly more added resources than the other

two policies with a relatively high efficiency ratio. This may be desirable when reconstructing a

website since the added resources may aid the human operator in manually re-creating missing

resources. On the other hand, the added resources may contain outdated or useless information that

is not useful for reconstructing the website, and the extra time spent recovering added resources

may be significant for large websites.

The Knowledgeable policy issues the fewest number of repository requests per reconstruction

(less than half the number of requests as the other policies) and has the highest efficiency ratio

when wanting to recover only non-added resources. Because fewer requests are issued with the

Knowledgeable policy, a website can be reconstructed much more quickly than if the other policies

are used.

From the recovery of the lost TechLocker website, Google’s cache has been shown to retain

resources for months after they have disappeared from the Web. This suggests that re-running

Warrick months after a website is lost may still uncover cached resources.

5 FACTORS AFFECTING WEBSITE RECONSTRUCTION

5.1 Methodology

Sampling Websites

A final experiment was conducted to determine which factors may contribute the most to the success

of website reconstruction from the WI [112]. This required a random sample of websites in order
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not to bias the the findings. Since sampling uniformly from the Web is currently not possible [164],

samples were obtained from the Open Directory Project (ODP) at dmoz.org. The ODP indexes a

wide variety of websites in over 40 languages, and all search engines have an equal chance of indexing

it.

URLs from the ODP were randomly selected that had a path depth of zero (http://foo.org/)

or one (http://foo.edu/~bar/) in order to limit the selection to the root pages of websites. Each

website was crawled starting from the selected seed URL, and all accessible resources were crawled,

regardless of MIME type.

In the previous two experiments, Wget was used as the crawler. Wget lacks some needed options

for a large-scale crawl, so Heritrix [120] was used instead. Heritrix is the Internet Archive’s archival

quality web crawler, and it is built for doing deep crawls of multiple websites at the same time.

Heritrix was configured to respect the robots exclusion protocol and delay an appropriate amount

of time per request in order to avoid over-burdening any particular site [165]. To avoid common

crawler traps, the maximum path depth was limited to 15 and maximum hop from the root page

to 15. To avoid re-crawling the same resource multiple times, URLs were normalized to lowercase

and stripped of common session IDs. And for simplicity, the download was restricted to URLs using

port 80 and the same host and domain name.

Sampling from the ODP data and crawling websites continued until 300 accessible websites

had been found that matched a minimum set of qualifications (see Appendix B for a listing of all

websites). First, any website that was entirely blocked by robots.txt or contained noindex/nofollow

meta tags in the root page was rejected (only eight sites fit this description). Second, the websites

had to contain valid content; websites with expired domains (two sites) or under reconstruction

(one site) were rejected. And in order to ensure that the selected websites could be completely

reconstructed within a one week time period, any websites that contained more than 10K resources

when crawled were rejected (26 websites). Although Warrick is capable of reconstructing websites

of any size, websites with more than 10K resources typically take more than a week to reconstruct

due to the limited number of daily queries imposed by the web repositories. In terms of size, the

sampled websites exhibited the power-law distribution that has been previously measured on the

Web [2] where most sites had few resources and few sites had many resources.

Data Collection

For 14 weeks (late August to late November in 2006), the 300 websites were crawled using the

same crawling policy as described previously. Crawls were performed on weekends when traffic is

typically low on most web servers. All 300 websites were reconstructed weekly by running two

Warrick processes on each of five servers. Warrick used the Knowledgeable crawling policy since it

was shown in the previous experiment (Section 4) to be the most efficient policy in terms of number

of repository queries and recovered resources. The weekly crawls and reconstructions produced

approximately 5 GB and 500 MB of compressed data, respectively.

Over the course of the experiment, several of the websites became inaccessible. Three websites

reported their bandwidth had been exceeded for a couple of weeks, and a few others appeared to be

off-line or misconfigured for a few weeks. Two websites were inaccessible when they did not renew
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FIG. 44: Success of reconstructions by week.

their domain name, but both re-appeared intact as the same site a few weeks later. One website’s

domain name quit resolving on week 10 and never became accessible again. A couple of websites

changed domain names. When this happened, the new domain name was added to the list of sites

to crawl and reconstruct. Statistics have only been computed for successfully crawled websites.

5.2 Results

Recovery Success

Figure 44 shows an overall picture of how successful the reconstructions were over time. Each

website’s weekly success (using s5) is plotted with the most successful reconstructions at the bottom

(graphs with other previously defined penalty adjustments looked similar). Each horizontal line

marks the reconstruction success rate for the same website each week. The figure is not intended

to give detailed information about any one website; instead, it shows that most websites were

reconstructed to the same degree each week since the colors vary vertically but to a much lesser

degree horizontally. But there are some exceptions. For example, site number 2 was successfully

reconstructed every week (red all the way across), but site 148 experienced a huge increase in success

on week 6 when it went from yellow to red (upon manual observation, site 148 changed the dynamic
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TABLE 20: Descriptive statistics for reconstruction success levels.

Mean Median Std Min Max Websites with s* = 0
s1 0.7761 0.8164 0.3266 0 2 3%
s2 0.7137 0.7817 0.2606 0 1 3%
s3 0.6250 0.6796 0.2726 0 1 5%
s4 0.4567 0.4278 0.2867 0 1 6%
s5 0.3901 0.3477 0.2764 0 1 10%
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FIG. 45: Distribution of s2 to s5 success.

portion of their site which accounts for the increase in success).

The descriptive statistics for the reconstructions are given in Table 20 along with the percent of

websites that experienced at least one reconstruction where the measured success was perfect (zero).

As expected, the success values dropped closer to zero as the penalty adjustments were relaxed;

where only 3% of the websites ever had a perfect reconstruction under the s1 level, 10% did under

the s5 level.

When the distribution of the success levels are examined (Figure 45), the s2 and s3 levels are

skewed to the right– about 16% of the reconstructions resulted in a 0.9 score or worse for s3, and

31% resulted in a 0.9 or worse for s2. The s4 and s5 levels (which do not penalize for changed

resources) favor scores much closer to zero. Under the s5 measure, almost 17% of all reconstructions

resulted in better than a 0.1 score. Note that s1 is not included in the figure since it is distributed

over the interval [0 to 2]; its distribution was skewed to the right similar to s2 and s3.

Content Type

The two most common types of content found in the 300 websites were HTML and images, accounting

on average for 40% and 53% of all content, respectively. Other textual resources like PDF, PostScript
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FIG. 46: Distribution and recovery of websites based on ratio of textual resources.

and Microsoft Office made up only a small fraction (2%) of all resources. All other resources

combined made up 5% of the content on average. HTML and textual resources proved to be the

most recoverable. On average, 77% of the HTML resources and 75% of the textual resources were

recovered. Only 42% of the images and 32% of resources with some other MIME type were recovered.

To see how recovery affects the amount of textual resources in a website, the ratio of textual

resources (HTML, PDF, MS Office, etc.) to other resource types were calculated for each website.

Each site was placed in groups where the text ratio ranged from [r, r + 0.1). Figure 46 shows

the distribution of websites (bars) based on the ratio of textual resources making up the site. The

average percentage of recovered resources for the sites is shown as a line (this is equivalent to 1 -

s5, as discussed in Section 5.2). The figure shows that a majority of sites had text ratios between

0.1 and 0.6. Although the recovery line grows higher for each group, there is a significant drop from

73% for group 0.8 to 59% for group 0.9. The percentage of textual resources in a website is thus not

the only factor dictating its recoverability from the WI.

Top-Level Domain

The 300 websites represented a variety of top-level domains (TLDs). As shown in Figure 47, almost

half of the sites were from the .com domain, and almost 40% were from a country code (cc) domain

(there were 25 distinct ccTLDs). Only four sites were from .edu, two from .tv and only one from

.info. From Figure 47, most TLDs had a recovery rate around 60% with the exception of the four

.edu sites which performed remarkably better.

Birth and Decay

The 300 websites exhibited little growth during the experiment. Half of the websites did not add

any new resources during the 14 weeks. The weekly birth rate of new resources was calculated (as

performed in [128]) by examining the fraction of new URLs that were crawled each week that were

not seen in any of the previous crawls. The average birth rate was a relatively stable 0.049. Only
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on week 9 did the average birth rate increase substantially, and that was due to a single website

that added 10K new URLs that week (and dropped almost all of them the following week). The

URLs appeared to be dynamically generated, likely due to a configuration error on their web server.

Discounting this website drops the average birth rate to a mere 0.014.

Although the websites did not grow much during the experiment, they did decay. A majority

of the websites (61%) lost at least one resource during the 14 weeks. Figure 48 shows the fraction

of new resources crawled each week (light bars) and the fraction of resources from week one that

were also crawled on week n (dark bars). The bars are normalized so the number of resources in

the first week is one. The figure illustrates that resources from week one slowly decayed (the dark

bars gradually get smaller each week) and were usually replaced by new resources at different URLs

(since the light bars hovered around 1.0). By week 14, the websites had lost about 13% of their

resources on average.

Change Rate

The sampled websites exhibited a broad range of dynamism. Some websites remained unaltered for

long periods of time, and others underwent numerous changes each day. To measure the rate of

change from week to week, resources crawled from week n were compared with week n − 1. The

change rate was calculated by taking the number of times a change was observed divided by the

number of times the resource was downloaded minus one [50]. So a resource with a change rate of

one means the resource changed every time it was crawled.

Most of the sampled resources (76%) did not change once during the 14 week period, and only

8% of the resources registered a change every time. Over a third of the websites (37%) did not

have any resources that changed. The resource type that exhibited the most amount of change were

HTML resources. Most images, PDFs, style sheets, etc. remained relatively static. Whereas 44% of

the HTML resources changed at least once, and 15% of them changed every time, only 0.8% of the

images changed more than once during the experiment.
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FIG. 50: Percentage of resources recovered by age.

To determine if the change rates would affect the recovery status (identical vs. changed) of

recovered resources, the final week’s reconstructions were examined (since the change rates are most

accurate by the final week), and all recovered resources were grouped by their change rates varying

from [r to r + 0.1). For each group, resources were categorized as identical, similar (shared 75% of

their shingles) or not similar to their crawled counter-parts.

Figure 49 plots the change rates for HTML resources (since non-HTML resources exhibited little

change). According to the figure, HTML resources that exhibited less than a 0.1 change rate had

the highest percentage of identical recovered resources (72%). HTML resources with a change rate

above 0.9 were rarely recovered in an identical state, but most (69%) were similar to their recovered

counterparts.

The unusually sharp drop in identical resources for group 0.1 was accounted for by a single

website; several hundred of its pages contained a MySQL error message embedded in them for two

weeks in a row. If the dynamically generated pages had not been misconfigured when crawled, they

would likely have been identical to the pages recovered from the WI.

The HTML resources with changed rates less than 0.1 that were ‘not similar’ to their recovered

counterparts were manually examined, and most of the resources actually appeared to be similar

to the recovered pages. Sometimes non-English pages were transformed when cached, and the

comparison function did not account for all transformations.

Age

Determining the age of resources on the Web is difficult and imprecise. When a resource is down-

loaded, the only indication about its age can be derived from the Last-Modified timestamp. The

Last-Modified date is when the file was last modified on the filesystem, not when it was created,

so it is a lower bound on the resource’s age. Additionally, web servers sometimes report incorrect

timestamps [40], and they do not report timestamps for dynamic pages. The only resources for

which the true age can be known (with an error of a few days) are those that appear for the first
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TABLE 21: Reconstruction performance of web repositories.

Repository
Weekly
contrib

Weekly
requests
per site

Efficiency
ratio

IA 22.9% 127.2 0.38
Google 27.4% 152.6 0.38
MSN 32.4% 101.3 0.62
Yahoo 17.1% 232.2 0.24

time in a subsequent crawl. Even then it is possible for the resource to have been accessible at the

same URL for a long time, but only before the crawl was a link to the resource added to the main

website graph. Despite these limitations, a resource’s age is defined as the number of days between

the current access time and the first access time or Last-Modified timestamp, which ever is oldest.

Only 36% of the HTML resources in the crawls had a Last-Modified timestamp, but more than

99% of textual and image resources had them. On the final round of crawling, 59% of HTML

resources were less than one year in age. If it is assumed that HTML resources missing a Last-

Modified date that were crawled on the first week were also created that week, the percentage jumps

to 85%. Images and textual resources were significantly older: 53% of images and 59% of textual

resources were at least one year old.

To understand the relationship between age and recoverability, all crawled resources were grouped

into 10 bins based on age. The bin breaks can be seen on the x-axis of Figure 50 (the first bin are

resources less than 5 days old, the second less than 10 days old, etc.). Each resource type was

graphed in Figure 50 based on the percentage of resources that were recovered in that age group.

The figure shows a general increase in recovery success for all four types of resources as they age.

As expected, the newest resources were generally the least recoverable. But the drop for HTML

and ‘other’ resource types in the final age category indicate that age may be not be the single most

significant predictor of recoverability.

Repository Contributions

Table 21 shows the percentage of resources that each repository contributed to the reconstructions.

The table also lists the average number of weekly requests issued to each repository per website and

the repository’s efficiency ratio.

In the initial reconstruction experiment, Google was the largest provider of resources with MSN

in second place. In this experiment, MSN was the largest contributor. One likely reason could be

that in the initial study Warrick used Google’s WUI to obtain cached results, but in this study

Warrick used the Google API. As mentioned in Chapter III, the Google API may be serving from

a smaller index than its web user interface.

The significantly higher requests per website and lower efficiency ratio for Yahoo is likely due to

the fact that Yahoo must often be asked twice if it has a particular URL stored, one request with a

‘www.’ prefix and another without as discussed in Chapter V.
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Crawler Directives

All four web repositories honor the robots exclusion protocol which protects certain URL paths from

being crawled. There were 63 websites in the sample (21%) that had a valid robots.txt file, and 14

of the files did not block any URL paths. Two sites (one selling sporting goods and another on-line

video games) specifically denied the IA crawler (ia archiver) access to their entire website but only

blocked a handful of URL paths for other crawlers. One website placed a robots.txt file on their

site on week 4 that gave explicit permission for most search engines to crawl their entire site but

blocked access to all other crawlers. The file was removed on subsequent weeks, possibly because

the webmaster discovered that the rogue crawlers s/he wanted to block typically ignore robots.txt

anyway. There were two sites that gave specific directives to googlebot, but none for msnbot or

slurp (Yahoo).

By far the most popular URL paths being blocked were cgi-bin, images and administrative paths.

This implies that many potentially valuable resources are not being preserved in the WI because

of the high resource demands the WI places on some websites or the perceived danger of having

administrative content replicated in the WI. Crawler burdens will likely continue to be a problem

until more efficient Web discovery methods are adopted [126].

Some webmasters like their websites being indexed by search engines but would prefer they not

be cached. Reasons may include the loss of potential website traffic and the lack of control to quickly

remove embarrassing or false content from the Web [133]. All four web repositories will refrain from

caching or archiving an HTML page if it contains a noarchive meta tag.

Examining all HTML pages, only two websites in the sample used noarchive meta tags, both

from the .de ccTLD. The first site was protecting a personal blog from being cached, and the

other was protecting all the PHP content from the commercial site. Interestingly, the second site

only targeted Google; all other robots were allowed to cache the site. In Chapter IV, the use of

noarchive meta tags only affected 2% of pages indexed by Ask, Google, MSN and Yahoo. The low

usage of noarchive meta tags suggests that few webmasters of typical sites want their pages kept

out of search engine caches and web archives. It may also be that few webmasters are even aware

of the existence of, or reasons for, using noarchive meta tags. Whatever the reasons, the current

low adoption of opt-out caching and archiving mechanisms is encouraging from a web preservation

standpoint.

5.3 Reconstruction Model

Factors for Successful Reconstruction

There are many factors which may contribute to the success of website reconstruction from the

WI. For example, a website composed mostly of textual resources would likely be more successfully

reconstructed than a site of mainly binary zip files since all four repositories show a preference for

textual resources over other types. It is also suspected that a website that is strongly connected

to the web graph would be more recoverable than one with few inlinks since having greater inlinks

increase the chance of a crawler finding the site. Older websites and sites that are more static in

nature are also likely to be more recoverable.
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In order to determine which factors contributed the most to reconstruction success of the 300

websites, several statistical tests were ran on the recovered resources, examining several variables:

• External backlinks – Websites with more inlinks (also called backlinks) to their root pages from

other websites are more likely to be discovered by other crawlers and could possibly be crawled

more frequently due to their importance. Lacking a large crawl of the entire Web, the backlink

facility of Google, MSN and Yahoo was used to determine the known backlinks to the root page

of each website every week. This measure is not always precise since Google does not reveal all

known backlinks [45], and IA does not have a mechanism to reveal backlinks.

• Internal backlinks – Web crawlers can more easily find resources that contain a large number

of backlinks within the site. Resources with few links may also be new additions to the website

which a crawler has yet to find.

• Google’s PageRank – Google likely re-visits a website frequently if it has a high PageRank,

and therefore a website is more likely to have a larger footprint within Google than a site with a

low PageRank. As mentioned previously, Google is the only search engine that publicly reports

its ‘importance’ measure for a website, and the value published on the Google Toolbar may be

out of date [62].

• Hops from root page – Crawlers often place hop count limits when crawling websites, so it is

expected that websites with pages closer to the root page will be better reconstructed than sites

with pages far from the root.

• Path depth – Like hops, crawlers may reject URLs with long path depths.

• MIME type – Search engines prefer textual resources over other types like images, zipped files,

etc.

• Query string parameters – Crawlers may reject dynamic pages with many query string pa-

rameters.

• Age - Websites that have very old resources are more likely to be stored in the WI than websites

with new resources. This is especially true since at the time of the experiment, only resources

that were at least 6-12 months old were accessible from IA [80].

• Resource birth rate – Websites that are producing new content at new URIs are less likely to

be reconstructed successfully than websites that are not increasing in URIs since it takes time for

new resources to be discovered.

• TLD – It is possible that a bias exists for the web repositories for particular TLDs [166, 170].

• Website size – It is possible that very large websites (in terms of number of resources) may have

fewer of their resources cached/archived than smaller sites.

• Resource size – Perhaps the size of a resource influences wether it will be stored in the WI. Larger

resources may be more content-rich and therefore preferred over small resources. But perhaps large

resources are not cached and archived as often because they take longer to download.
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Factors like the use of Flash, JavaScript, etc. by the websites were not considered since the

Heritrix crawler is likely of equal or lesser technical capability when compared to the crawlers used

by the web repositories. Heritrix and WI crawlers are likely to discover the same resources on the

same website.

Analysis

Several statistical tests were applied using SAS software (version 9.1) to the recovered and missing

resources (143,001 observations) from the final week of reconstructions when the age variable was

most accurate. The Pearson’s correlation coefficient was first examined to see if there was a corre-

lation between any of the above mentioned interval variables. Birth rate, website size and resource

size were first transformed using log to approximate the normal distribution, an assumption of this

test. The highest correlation (0.428, p < 0.0001 where p is the p-value of the test of zero correlation)

was between hops and the website’s size. The positive correlation matches the intuition that it takes

more hops to reach resources from the root page in larger websites. There was also a mild correlation

between hops and path depth (0.388, p < 0.0001) which is expected since URLs with greater path

depth are often located further down the web graph from the root page.

There was a mild negative correlation between age and number of query parameters (-0.318,

p < 0.0001). This may be because dynamically produced pages are easier to add to a website (for

example, by adding more records to a database) and because determining the age of dynamic pages

is problematic as discussed in Section 5.2.

Finally, there was also a mild positive correlation between external links and PageRank (0.339,

p < 0.0001), website size (0.301, p < 0.0001), and hops (0.320, p < 0.0001). The correlation between

external links and PageRank is expected since Google’s PageRank is at least partially influenced by

external backlinks. The correlation between external links and website size may be explained by

reasoning that larger websites tend to attract more links, either because the effort to create a larger

website may imply the website is more important or of higher quality or because websites with many

pages are more easily found by search engines and therefore will garner more links over time [39].

Since none of the correlations were above 0.5, none of the variables were removed from the model.

Next a generalized linear model analysis was applied to determine which of the variables were most

important in explaining the model. The website’s host name was added to the analysis since it is

possible that, all things being equal from the twelve parameters, two websites may still experience

different levels of recovery. The resulting analysis had an R-square value of 0.468041 (DF = 322,

p < 0.0001), meaning that the model explains about half of the variations observed. According to

the type III sum of squares analysis, all thirteen variables were significant at the p < 0.0001 level

except website size which was significant at the p < 0.05 level.

A multiple regression analysis was then performed with the ten continuous variables (ignoring

the categorical variables of host, TLD and MIME type since categorical variables are not appropriate

to this analysis) to determine how the variables impact the model. The analysis had an R-squared

of 0.1943 (DF = 10, p < .0001), and the parameter estimates are shown in Table 22. An analysis

showing the three most significant variables (if none of the others were available) produced PageRank,

hops and age (R-squared = 0.1496).
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TABLE 22: Regression parameter estimates.

Variable Param Est Pr > |t|
Intercept 0.76071 < .0001
External backlinks -3.96E-7 < .0001
Internal backlinks 0.00004 < .0001
Birthrate -0.13361 < .0001
PageRank 0.08162 < .0001
Website size -0.04074 < .0001
Hops -0.04184 < .0001
Path depth -0.06044 < .0001
Query params -0.04342 < .0001
Resource size 0.00248 .0018
Age 0.00014 < .0001

The parameter estimates confirm the initial hypotheses on the effect of each variable in the overall

success of website reconstruction. The only parameter which did not fit the initial hypothesis was

resource size. According to the analysis, resources have a slightly better chance of being recovered as

their size increases. This may be because very small resources are not indexed by some search engines

or have a higher chance of being dropped during the de-duping processes. A caveat to resource size

is that search engines often limit the amount of data they will cache from any particular resource.

For example, Yahoo will not cache more than 215 KB from a textual resource as was seen in Chapter

IV.

The results of the multiple regression analysis can help predict how much of a website can be

recovered if it were to be lost today. The model has a rather low R-squared value which indicates

there are other parameters affecting website reconstruction which were not measured. One reason

the model does not have a higher R-squared value is because IA and the three search engines have

very different crawling and caching priorities. Had the reconstructions been performed with only IA

or only the search engines, the analysis would possibly have been different. And since measuring age,

external backlinks and PageRank is problematic, perhaps more accurate values would have increased

the R-squared value. Finally, there are numerous hidden factors which cannot be measured which

may account for some of the unexplained portions of the model. For example, webmasters submitting

URLs directly to search engines and website discovery methods like the Sitemap Protocol may make

a website more recoverable from the WI.

5.4 Discussion

This final experiment tried to measure the dynamism and “reconstructability” for the “typical”

website. From the three month snapshots, it was shown that most of the sampled websites were

relatively stable; over a third of the websites never lost a single resource over the entire experiment,

and half of the websites never added any new resources. Thirty-seven percent of the websites did

not have a single resource that registered a change during the 14 weeks. More than half of all images

and textual resources were more than a year old, but at least 59% of the HTML resources were less
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than a year old (or had been modified within the year).

From the analysis, the typical website indexed by ODP can expect to get back 61% of its resources

if it were lost today (77% textual, 42% images and 32% other). This finding is significantly higher

than the 38% success rate witnessed in real Warrick usage data from the previous chapter (Section

6). Just the fact that the websites were indexed by ODP seems to have played a significant role in

how well the websites were preserved.

The findings suggest the three most significant things a website can do to improve its chances of

being successfully reconstructed are to improve its PageRank, decrease the number of hops a crawler

must take to find all the website’s resources, and create stable URLs for all resources. Google provides

a number of tips for webmasters to improve their website PageRank scores, including admonitions

to increase external backlinks, get listed in directories like the ODP, and use few query string

parameters [68]. However, a website that does increase its PageRank may also hinder the ability to

successfully reconstruct their website if it did become lost. Although a high PageRank will likely

improve the amount of pages Google will crawl on a website, it also will likely increase the rate at

which the search engine re-crawls the website. An experiment in Chapter IV demonstrated that

Google purged their cache on the same day a re-crawl revealed a resource was no longer accessible

on the Web. Therefore, resources may be evicted from cache more quickly for websites with high

PageRank.

6 CONCLUSIONS

This first experiment with Warrick presented in this chapter demonstrated that reconstructing web-

sites from the WI was feasible with typically a high level of success. It was also shown that the

combination of multiple repositories was much more effective in reconstructing a website than if

only a single repository from the WI was used. The second experiment showed how lister queries

could be used to significantly improve the efficiency of website reconstructions. The final experiment

attempted to capture the properties of a “typical” website and showed that those that were ranked

as more popular by Google and were crawler friendly stood a better chance of being reconstructed

than other websites.

All of these experiments have focused on recovering the rendered content of websites, but the

generative functionality (the server components) have not been recoverable. Recovery of the server

components would be very useful in restoring the functionality of a website that produced most of

its content dynamically. The next chapter explores how the WI can be used to cache and recover

both the rendered content and the generative functionality.



97

CHAPTER VIII

RECOVERING A WEBSITE’S SERVER COMPONENTS

Search engines and web archives do not have access to a website’s server components (scripts,

databases, etc.), so they only store the client-side representation of a website (see Figure 2 of Chapter

III). In the event that a website is lost, only the client’s view of the website can be recovered from

the WI. While this may be useful for recovering much of the content of the website, it is not helpful

for restoring the website’s functionality. And because many dynamically produced pages reside in

the deep web, a significant amount of content may not even be recoverable from the WI.

This chapter investigates how the WI can be used to store and recover a website’s server com-

ponents. Several techniques are explored to inject server components into crawlable portions of a

website, thus using the WI as an off-site backup system. One of the implemented techniques is

inspired by the use of steganography where information is hidden within a larger context [87]. This

technique is implemented as a proof-of-concept, using open source software for a digital library.

1 GENERATING DYNAMIC WEB CONTENT

There are four different methods by which dynamic Web content can be produced. This summary

is restated from [141] with some modification:

Server-side programs – A program or script executes on the server and generates a complete

HTML (or other format) page which is then transmitted to the client. Common Gateway

Interface (CGI), ASP.NET and Java servlets are popular technologies for server-side programs.

Embedded code with server-side execution – Code is inserted into static HTML files, and

when the files are requested, the code is executed on the server, and the output replaces the

code from the page. The newly created HTML page is then transmitted to the client. PHP:

Hypertext Preprocessor (PHP), Active Server Pages (ASP) and SHTML are popular examples.

Client-side programs – A program which is downloaded from the server and executes on the

client. It may need to be granted special privileges by the user in order to execute. The code

is triggered by a web page and typically appears in a rectangular portion of the browser. Java

applets, Flash and ActiveX controls are popular examples.

Embedded code with client-side execution – Code is inserted into static HTML files, and the

code is executed by the client’s browser. Parts of the code may optionally be placed in a

separate file that is downloaded by the browser before execution. JavaScript and VBScript are

popular examples.

Server-side programs and embedded code are completely hidden to web crawlers. Crawlers are

exposed only to the output of the programs when links exist to generate such content are placed

on the surface web. Content that is produced by server-side programs via a form submission is

frequently hidden in the deep web (see Section 3.2 of Chapter II).
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Although client-side programs are not hidden from web crawlers, search engines do not usually

crawl them because they do not contain useful, indexable content. Embedded client code in a web

page will remain cached by search engines if they are inserted into HTML files. If the code resides

in a separate file, the search engine will frequently not cache it.

2 WHAT TO PROTECT

When considering which server components to protect, two approaches can be used. Using a pes-

simistic approach, the worst possible scenario is planned for, and as many server components are

protected as possible: scripts, database contents, and crawlable content like images, style sheets,

and PDFs that may not be stored in a canonical format by all members of the WI. Other resources

could be included like the script interpreter, third party libraries, database software, and even the

operating system if there is a possibility that any of these service components are in danger of being

lost.

Using a more optimistic approach, protection is given to as few resources as possible without losing

the functionality of the website. In this case only the customized scripts and database contents are

protected, and it is assumed the WI would store any crawlable content in its canonical format, and all

third-party supporting software would be readily available in an emergency. The optimistic approach

puts a much lower storage burden on the WI although the chance of losing certain components is

higher.

3 INJECTION MECHANICS

3.1 Techniques

There are three methods that could be used to inject server components into the WI:

1. Exposing the raw components - The server components of a website can be combined into

a single compressed file (or multiple files) which is then placed on the web server and exposed

to the WI.

2. Robot vaults - The server components are encoded into special crawlable pages which are

created solely for WI crawlers.

3. Dispersion through preexisting content - The server components are injected into preex-

isting crawlable pages in an unobtrusive manner.

The first method is the simplest, but because search engines do not prefer compressed binary

content, it is likely to only be captured by web archives1. This leaves the components particularly

vulnerable to loss.

The second method has been explored by Traeger et al. [168]. They demonstrated how search

engine caches could be used for backing-up a filesystem by creating special HTML pages designed

only for storage; the pages did not contain readable information that would be useful to the public
1An exception to this is Google Code Search (http://www.google.com/codesearch) which makes source code

available from compressed binary content found crawling the Web.
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<html>

<head>...</head>

<body>...</body>

<!-- BEGIN_FILE_RECOVERY

U2FsdGVkX1/782IwTsCCkyNyw78O ...

END_FILE_RECOVERY -->

</html>

FIG. 51: Encoding of a file in HTML comments.

at large. While all members of the WI are likely to crawl these pages, search engines might consider

them spam and would therefore not store them in their caches. Additionally, if a single page was

not cached, the embedded file was lost.

The final method uses previously existing pages of a website for storing the server components

which therefore does not run the risk of creating spam. Taking advantage of the fact that HTML

allows comments of any size to be inserted within the page without affecting the appearance of the

page, this approach can hide the encoding from the viewer of the page. Like steganography, the

encodings are hidden from view. Additionally, erasure codes can be used to spread the encodings to

multiple pages where recovery of only a subset of the pages allows complete recovery of the server

component. This mitigates the risk incurred by the robot vaults method of requiring a single page

to be stored by the WI in order to recover a single server component.

3.2 Dispersing Encoded Components

As performed in [168], the server components of a website can be injected into crawlable pages by

base64 encoding the components and inserting the encodings into HTML comments as illustrated

in Figure 51. The comments can be injected into any pre-existing page on the target website.

An erasure code transforms a message of b blocks into a message with n blocks (where b < n)

where the original message can be recovered from a subset of those blocks [86]. Erasure codes have

been used in a variety of applications like RAID systems [139], secret-sharing [86] and information

dispersal [140]. Figure 52 illustrates how erasure codes can be used to inject a server file into

crawlable content:

a) Use erasure codes to break an optionally encrypted server file into n blocks where recovery of

any r blocks allows for complete recovery of the encrypted file.

b) Insert each block (base64 encoded) and metadata into n HTML files.

c) Wait for search engines (or other web repositories) to crawl and cache the HTML files.

Once a sufficient number of pages have been cached or archived, the server file can be recovered

like so:
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FIG. 52: Injecting and recovering a server file into and from the WI.

d) Recover as many HTML files from search engine caches as possible (m).

e) Extract available blocks and metadata from the HTML files.

f) If at least r blocks have been recovered (where r ≤ m), reconstruct the server file (and optionally

decrypt) using the erasure codes.

3.3 Segmenting Approaches

Since dynamically generated websites normally contain a large number of server files (sometimes

much larger than the number of indexable pages), it is best to compress the server files together into

one or more zip files. This reduces the amount of data injected into the WI and is practically easier

to manage. When choosing how to segment the server files into zip files, two different approaches

can be taken:

1) All-or-nothing approach – Compress all server files together into a single file and inject it into

all available pages.

2) Segmented approach – Compress groups of server files into single files based on some sort of

grouping mechanism (e.g., by directory, change rate, last modified, etc.) and inject them into

subsets of available pages.

The first approach is the simplest to implement, but if the minimum number of blocks are not

recovered, then nothing is recovered. Also, if one server file is changed, the single compressed file

must be recreated and re-inserted into all the HTML pages. A web repository would then need to

re-crawl and store a large number of pages it had already crawled in order to have stored all the

blocks of the same version.

Although more complicated, the second approach allows recovery of individual groups of server

components when a minimum number of blocks are recovered. Also, if one server file is changed,

only the compressed file containing the changed server file must be recreated and re-inserted, thus

isolating the changes to a subset of HTML files.

Figure 53 illustrates these two approaches. In the all-or-nothing approach, all the server files

are compressed together into a single zipped file, and the file’s blocks are then distributed to all
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FIG. 53: Approaches to injecting server components into web pages.

the available pages. With the segmented approach, groups of server files are grouped together into

separate zip files which are then distributed to subsets of pages. Larger zip files (in bytes) are

allocated a larger number of pages. For each subset, r pages would need to be recovered (where r is

specific to the subset) to reconstruct the zipped server file.

When a website is lost, complete knowledge of where each zipped file was injected and which

zipped files are missing is ideal. For example, if none of the pages could be found in the WI

that house the first zip file, knowledge that the file is missing (and knowledge of its contents) can

help the recoverer when restoring the website’s functionality. A manifest listing the filenames,

paths, timestamp, sizes and details about where the components were injected can be produced and

distributed along with the zipped server components. Inserting the manifest into every recoverable

page would ensure its recoverability at the cost of re-building and re-injecting the manifest every

time a file changed. To minimize these costs, the manifest could be inserted into one or more pages

that have a high likelihood of being recovered, like the root page of the site or the pages a single

hop away from the root page.

3.4 Choosing Block Sizes

When choosing values of n and r, care must be taken to ensure the block sizes are not too large

since search engines will not cache the text of any HTML page beyond a certain threshold. Google’s

limit is 977 KB, Yahoo’s limit is 214 KB, and Live’s limit is 1 MB (see Section 3.5 of Chapter IV).

The block size can be calculated like so:

block size = file size/r (25)
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TABLE 23: Various r values (bold).

Zipped file
size Block size (before base64 encoding)

50 KB 100 KB 150 KB
1 KB 1 1 1
1 MB 21 11 7
100 MB 2,048 1,024 683
1 GB 20,972 10,486 6,991

As r increases, the size of the blocks will decrease, but the minimum number of HTML files to store

r blocks increases. Therefore, a minimum value for r should be used which takes into account the

search engine’s cache limit t, the maximum block size or load z that is acceptable for adding to the

website’s pages, the total number of HTML resources h whose size is < t − z, and the size of the

zipped server file s. The minimum value of r for a zipped file is calculated like so:

r = ds/ze (26)

The z parameter is the only one which can be easily manipulated. Ideally a value of z should

be picked that is as small as possible so the resulting pages are not overly large, causing them to

download slower and creating more of a burden for the repository. If r > h then there are not

enough HTML pages to store the minimum number of blocks r. In this case the acceptable block

size (z) would need to be increased, or if possible, more pages could be added to the website (thus

increasing h) or the size of the server file (s) should be decreased by removing less essential server

components. Once r has been calculated, n blocks can be created where n = h.

To illustrate how the size of the zipped file s and the block size limit z affects the number of

HTML pages required to store the blocks, the value of r has been calculated for various values of s

and z in Table 23. Since the average size of HTML files varies between 10-40 KB [13, 134], choosing

block sizes above 170 KB is infeasible if wanting the repository with the least amount of available

space (Yahoo) to store the blocks in their entirety.

3.5 Versioning

When web server components change or new ones are added, the injected pages must be updated

with newly computed blocks. Additionally, metadata about each block needs to be kept along with

the blocks for version control since only blocks that contain the same version of a server file can be

used together to reconstruct the server file.

Since search engines often crawl the same pages only once a day or less often to be polite to

the web server, blocks can be re-computed on a daily basis, ideally at times when server activity is

low. Alternately, a web server module could be used to inject pages on-the-fly with encoded blocks

depending on the identity (IP address or user agent) of the requester. This would allow smaller

pages to be served to regular users and larger pages with the encoded blocks to be served to search
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engines. This technique of serving clients different pages based on their identity is called cloaking,

and it must be used with caution since most search engines disapprove of it [176].

3.6 Security Considerations

The WI is accessible to everyone; this has its benefits and its drawbacks. If a website owner was to

die and their site became lost over time, the site’s users may want to recover the site so it would

remain accessible to the site’s user community. Having the server components readily accessible from

the WI would dramatically decrease the effort involved in making the site functional once again.

On the other hand, the site may contain sensitive data like passwords, account IDs, credit card

numbers, etc. which the site owner may never want accessible to a third party. In this case the server

components could be encrypted with a private key, and death of the site owner (and knowledge of

the key) would likely prevent the functionality of the site from ever being recovered (at least until

the encryption was broken). The site owner should also consider what would happen if the key were

ever forgotten or compromised.

4 EXPERIMENTS

To validate the feasibility of recovering a website’s server components from the WI, two experiments

were conducted using websites that dynamically produce a majority of their content. The experi-

ments were limited to digital libraries (DLs) which were running GNU EPrints [53], a popular open

source DL package that is composed of Perl scripts, configuration files and MySQL database. Ten

randomly selected DLs running EPrints were crawled and reconstructed to see how much content

might be recovered for a typical EPrints DL. The server components for these DLs were not recov-

erable since they did not implement any injection methods. In the second experiment, a test DL

was created, the Monarch Repository, using EPrints software. It contained 100 PDF resources and

embedded server encodings. The DL was reconstructed on a weekly basis for 24 weeks.

4.1 Reconstructing 10 Digital Libraries

The first experiment examined how much of an EPrints DL could be recovered from the WI if

the DL was to suddenly disappear. Ten randomly selected DLs running EPrints were selected

from the Registry of Open Access Repositories (ROAR) [143]. Using the same methodology from

the reconstruction experiments of Chapter VII, the DLs were crawled and then reconstructed with

Warrick, and their reconstructions were compared to the crawled sites. Of course the reconstructions

were only able to recover the client-side representation of the sites and none of the server components.

A distinguishing characteristic about DLs is that they typically curate a large number of non-

HTML resources like historical images, academic documents, and the like. They maintain a variety

of metadata about each resource for purposes of provenance. For many DLs, PDF documents are

the primary resources being curated, and much of the metadata can be re-generated as long as the

PDF remains available. The ten DLs selected in this experiment contained a variety of resource

formats, but they all contained a number of PDFs.

Table 24 lists the ten DLs in order of total resources (HTML, images, PDFs, etc.) along with
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TABLE 24: Ten reconstructed digital libraries.

Digital Library All resources PDFs Diff Recon
Total Recov Total Recov as PDF as HTML vector diag

1. eprints.libr.port.ac.uk 176 97.2% 36 94.4% 2.9% 97.1%
(0.722,
0.028,
0.018)

2. archiviomarini.sp.unipi.it 222 86.0% 47 46.8% 13.6% 86.4%
(0.658,
0.131,
0.000)

3. eprints.erpanet.org 272 82.0% 66 60.6% 75.0% 25.0%
(0.467,
0.062,
0.229)

4. open.ekduniya.net 452 95.4% 87 81.6% 4.2% 95.8%
(0.699,
0.046,
0.005)

5. brief.weburb.dk 458 88.4% 143 82.5% 72.0% 28.0%
(0.286,
0.109,
0.022)

6. eprints.bbk.ac.uk 771 93.4% 331 91.8% 1.3% 98.7%
(0.720,
0.065,
0.004)

7. eprints.vu.edu.au 1192 98.1% 314 96.5% 84.2% 15.8%
(0.316,
0.017,
0.004)

8. eprints.lse.ac.uk 1336 95.0% 513 89.5% 2.8% 97.2%
(0.821,
0.046,
0.003)

9. www.cbmh.ca 1695 99.6% 673 99.6% 12.2% 87.8%
(0.602,
0.004,
0.003)

10. bnarchives.yorku.ca 2130 30.3% 272 84.6% 47.4% 52.6%
(0.173,
0.690,
0.012)

Average 870.4 86.5% 248.2 82.8% 31.6% 68.4%
(0.546,
0.120,
0.030)
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TABLE 25: Composition of Monarch DL.

Type Total Distribution
HTML 123 34.0%
Images 110 30.4%
PDF 100 27.6%
Style sheet 26 7.2%
Other 3 0.8%
Total 362 100%

the difference vectors and reconstruction diagrams. On average, 87% of the DL’s resources were

recovered and 83% of the PDFs. Unfortunately, the PDFs recovered were much more likely to be

in HTML format rather than their native format (68% vs. 32%). This may be acceptable for PDFs

that are purely textual, but loss of figures and other images in the PDF-to-HTML conversion process

are usually problematic in the face of complete loss (see Section 2.2 in the previous chapter for a

complete discussion of this issue).

4.2 Recovering Server Components From a DL

Setup

The second experiment was a proof-of-concept, demonstrating the server injection techniques pre-

sented in the previous sections could be used to recover the server components of a website. A DL

was created using EPrints and populated with 100 academic papers in PDF format and metadata

from the fields of Web technologies and information retrieval. The PDFs were all previously acces-

sible on the Web. Since the PDFs were accessible to a web crawler, it is possible that a majority

of them would duplicate PDFs already cached by the search engines. However, Google Scholar fre-

quently provides many alternate locations of the same PDF and maintains multiple cached copies

as evidenced by Figure 54. Although Warrick does not pull directly from Google Scholar, an inves-

tigation by the author revealed that all the papers cached from the example in Figure 54 were also

accessible from the Google cache used by Warrick.

An example web page from the Monarch DL (as it was called) is shown in Figure 55. If the user

places the cursor over the PDF icon, a preview image of the document appears. This PNG image

can easily be found by a web crawler. Although each page notified the reader that the DL was a

“test repository,” it was decided during the design of the experiment that a search engine would be

unlikely to refuse caching the page because of the presence of that phrase. The composition of the

DL as seen by a typical web crawler is shown in Table 25.

The optimistic approach was adopted to preserve the server components: only the Eprints soft-

ware (Perl scripts), configuration files and database contents (extracted with the mysqldump tool)

were preserved. The size of the software was approximately 3.3 MB (uncompressed), 2 MB for config

and other miscellaneous files and 650 KB for the database contents. Tarring and compressing all

these files together with gzip produced a 1 MB file. The PDFs occupied 41 MB of space and would
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FIG. 54: Google Scholar maintains 11 versions of the same paper, some of which are cached.

FIG. 55: Monarch DL screen shot.
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FIG. 56: Encoding of a server file in HTML comments from the Monarch DL.

have added 30 MB to the compressed tar file. An example of the injected server components from

the Monarch DL is shown in Figure 56.

For 19 weeks, the Monarch DL was crawled (with Heritrix) and reconstructed (with Warrick using

the Comprehensive policy) at the end of the week as was performed in the reconstruction experiments

from the previous chapter. The crawls were matched with the reconstructions to produce an accurate

assessment as to how much of the website was being successfully reconstructed each week.

Several techniques were used throughout the experiment to test the all-or-nothing and segmented

approaches and website updates. Initially, the segmented approach was used to create ten compressed

tar files, one for each directory of the Eprints software and the database. The files were dispersed

among the 123 HTML pages according to size, so larger files were allocated more pages than smaller

files which kept the block sizes from becoming too large. The manifest was encoded and placed

in the root page of the DL. The resulting pages averaged approximately 60 MB in size, far below

Yahoo’s 214 KB size limit. On May 19, 2007, links pointing to the Monarch DL were placed on

three previously indexed pages on the www.cs.odu.edu website in order to advertise the existence

of the DL to the WI.

After nine weeks, a single link was added to the root page which pointed to a single web page

which had previously been unlinked (accidentally by the author). This unlinked page contained one

of the encoded blocks which was needed to recover one of the ten server files. Three weeks later,

several of the encoded blocks were re-arranged and re-allocated to eight web pages to simulate an

update to the website. And three weeks later, the all-or-nothing approach was tested by creating a

single gzipped tar file for all the DL server components and distributing it among the entire website.

A “This page was modified on date and time” notice was also added to each page in this last phase

to encourage the search engines to re-cache all the pages.
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TABLE 26: Updates and changes made throughout the experiment.

Week Summary

1 Ten segments are distributed throughout the website.
10 Single link is added to unlinked web page.
13 Subset of blocks are reallocated to eight web pages.
16 All server components are reallocated to all web pages.
19 Website is taken off-line.

Finally, the DL was taken off-line on week 19 to simulate the loss of the website. The DL was

configured to return an HTTP 404 (not found) response to every URL request except for the root

page which contained a notice that the website had been taken off-line. These steps are summarized

in Table 26.

Results

Figure 57 shows how much of the Monarch DL was recovered each week. The 362 resources are

ordered on the y-axis by resource type. A square dot indicates that the resource was recovered that

week. The percentage of resources recovered each week is plotted in Figure 58. Just a few days

after a link was created to the Monarch DL, Google discovered and crawled the website, making a

quarter of the discovered pages available from their cache. Each week the percentage of resources

recovered from Google increased. Live and Yahoo had crawled a number of resources from the DL

a few weeks after Google, but neither search engine made anything available from their cache until

later in the experiment as will be discussed shortly. Several style sheets (categorized as “other”)

where recovered from IA beginning on week 17, only two months after they first crawled the website.

On week 7 and 8, 100% of the HTML resources were recovered (minus one unlinked page), all

from Google. However, on week 9 several HTML resources which were once accessible from Google’s

cache were no longer cached, and a 100% recovery rate for HTML resources was not observed again.

As illustrated by Figure 57, a small number of URLs tended to fluctuate in and out of Google’s

cache throughout the experiment. For example, the URL http://blanche-03.cs.odu.edu/118/

was cached on weeks 1, 2, 4–9, 13–17.

Although Google crawled a large number of images on week 7, only a handful of images were

recovered from Google by week 15; interestingly, one of them appeared to be a blank image (Figure

59). Live had cached 18 images by week 15, but Warrick was not able to recover them due to a bug

in the Live API [109].

Unlike the high percentage of recovered PDFs from the first experiment (Table 24), Figure 58

shows only a small percentage of the Monarch’s PDFs were made available from Google’s cache;

none were accessible from Live and Yahoo. As mentioned earlier, a possible explanation for the low

percentage of cached PDFs may be that a majority of the PDFs were recognized to be duplicates of

PDFs already cached.

Figure 60 shows the distribution of the Monarch DL resources that were vulnerable, replicated,

endangered and unrecoverable each week. The DL was taken off-line at week 19 when all replicated
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FIG. 59: Images from Monarch DL cached by Google.
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FIG. 60: Availability of Monarch DL resources.

resources became endangered and all vulnerable resources became unrecoverable. At this point, the

percentage of unrecoverable resources continued to increase throughout the rest of the experiment.

The server components were far more recoverable than the resources making up the client view.

Table 27 lists the percentage of recovered HTML pages and server files each week and the contribu-

tion rate of each repository throughout the experiment. Some of the weeks indicate an update to

the website was performed prior to that week’s reconstruction. Almost 100% of the server compo-

nents were recoverable from the WI just two weeks after the experiment began, despite having only

recovered 60% of the HTML pages. It was not until week 10, when a link was posted to an unlinked

web page, that all 100% of the server files could be recovered.

When several encoded blocks were reallocated to eight web pages at the beginning of week 13, the

percent of recoverable server files dropped accordingly. The web server logs indicated that Google,

Live and Yahoo continued to crawl the affected pages after the changes were made, but the cached

pages were not being updated. Since the vast majority of pages were dynamically generated and

did not return a Last-Modified HTTP header, the search engines may have performed some type

of processing on the crawled pages which ignored changes to HTML comments only. It took nearly

three weeks before three of the eight pages were recoverable which allowed all 100% of the server

files to be recovered once again.

The the end of week 16, none of the server components were recoverable. This was due to the

complete reallocation of all the server components at the beginning of the week which required the

altered pages to be re-crawled and cached. Since the WI seemed to mostly ignore changes to only

HTML comments in the previous weeks, a single line of text was added to each page stating “This

page was modified on date and time.” This modest change seemed to encourage the WI to re-cache

the altered pages because the following week 100% of the server files were once again recovered.

When the DL was taken off-line at the beginning of week 19, 100% of the server components

were recoverable at the end of the week. All 100% continued to be recoverable through week 24

due, mainly because of Live’s contribution. Google and Yahoo contributed far fewer resources after
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TABLE 27: Recovered server files and repository contributions each week.

Week Recovered Recovered Contributors (%)
HTML
(%)

server
files (%) Google Live Yahoo IA

1 23.6 59.4 100 0 0 0
2 60.2 99.6 100 0 0 0
3 65.0 94.6 98.9 1.1 0 0
4 80.5 99.7 100 0 0 0
5 85.4 99.7 99.2 .8 0 0
6 95.9 99.7 99.2 .8 0 0
7 100.0 99.7 97.1 2.9 0 0
8 100.0 99.7 98.5 1.5 0 0
9 98.4 99.7 98.5 1.5 0 0
101 92.7 100 100 0 0 0
11 92.7 100 88.4 11.6 0 0
12 91.1 100 89.5 10.5 0 0
132 98.4 92.1 85.2 14.8 0 0
14 82.1 92.1 69.6 17.4 13.0 0
15 98.4 100 81.6 14.2 4.2 0
163 97.6 0 80.6 11.5 7.9 0
17 98.4 100 68.7 8.2 12.3 0.1
18 91.1 100 66.3 6.9 16.3 0.1
194 91.1 100 47.1 5.8 36.1 0.1
20 83.7 100 2.5 66.2 21.17 0.1
21 83.7 100 9.9 52.7 21.4 0.2
22 96.7 100 3.7 79.4 7.3 0.1
23 94.3 100 3.8 83.5 2.8 0.1
24 96.7 100 4.1 82.9 3.2 0.1

1Single link is added to unlinked web page.
2Subset of blocks are reallocated to eight web pages.
3All server components are reallocated to all web pages.
4Website is taken off-line.
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week 19 because most of the missing DL content was purged from their caches; IA remained steady,

contributing mainly CSS files each week.

5 DISCUSSION

The injection technique using erasure codes seems to have been very effective for the proof-of-concept.

Even though the Monarch DL had never been crawled before, nearly all of its server components

were recoverable within two weeks of it going live. This means the Monarch DL would have lost none

of its dynamically-produced web pages had it been lost whereas the DLs from Table 24 would have

lost an average of 13% of their pages. A month after the DL was “lost,” all the server components

remained recoverable.

As mentioned earlier, injecting server components into the WI has some disadvantages. First,

it puts an additional load, however small, onto the web repositories that they may not want to

take-on. If the injection technique were adopted widely, web repositories may take steps to remove

suspicious comments from crawled pages. Second, the additional payload to each page makes them

download slower. This is certainly an issue where bandwidth is limited (e.g., developing countries

and mobile clients). Third, some alteration of the visible contents of injected pages may be required

to induce the WI to refresh its holdings. Forth, setting up such an injection mechanism requires

a small amount of work by the webmaster before the website is lost; this is opposed to the lazy

preservation approach of “no work required.” And finally, it may not be wise to place private data

into publicly accessible locations like the WI, even if encryption is used.

Despite these limitations, there is a need for a safety net like lazy preservation for preserving

the server components of a lost website so re-enabling its functionality and accessing its deep web

resources is possible. Perhaps a business model could be developed that provided an insurance

policy for lost websites. An organization like Google with large amounts of disk space (and large

amounts of public trust) could automatically back-up any number of web servers without cost to the

webmasters. In the advent of a loss, the organization could recover the lost web server components

for a fee. Considering the cost of re-building a dynamic website from scratch, a webmaster may be

willing to pay a large amount of money to recover a lost website, enough to cover the collective cost

of storing so much data. For such a mechanism to work, it would need to be easily enabled by the

“laziest” of webmasters.

6 CONCLUSIONS

Several techniques for recovering the server components of a website from the WI were developed

in this chapter. One promising technique was implemented in an EPrints digital library, and it was

demonstrated that nearly all the DL’s server components could be recovered from the WI just two

weeks after the DL was made accessible on the surface web. Pages were refreshed in the WI a few

weeks after they were modified, allowing the modified server components to be completely recover-

able. This injection technique may not be ideal for every type of website, but it does demonstrate

that the lazy preservation approach to preserving server components is at least feasible with a small

amount of work on behalf of the webmaster.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

1 CONCLUSIONS

As the Web becomes a hub for our daily activities, curation and preservation of Web-based material

imposes an increasing burden on individuals and institutions. It is likely that the Web will continue

to suffer the effects of link rot for the foreseeable future, and content that is of significant importance

to a variety of audiences will continue to be lost when they are unprotected, abandoned or destroyed

by their creators. Lazy preservation is an alternate model of preservation which harnesses the

collective refreshing and migration facilities of the Web Infrastructure. Rather than preserving a

limited collection of known value, lazy preservation provides Web-scale preservation for items of

unknown importance.

This dissertation has demonstrated how lazy preservation tools like Warrick can reconstruct lost

websites from the WI with generally positive results. The experiments from Chapter IV characterized

the types of resources found in the WI and the behavior the WI exhibits when ingesting new web

content. Chapter V laid the groundwork for how the WI can be crawled, and Chapter VI showed

how a web-repository crawler like Warrick can be implemented. The experiments of Chapter VII

verified that using the WI as a collective whole was much more effective than using individual WI

members alone and that a majority of a ‘typical’ website’s resources can be recovered from the WI.

This dissertation concluded with an experiment showing how the functionality of a dynamically

produced website to be recovered from WI.

There are numerous up-front preservation mechanisms that individuals could use to protect their

websites from loss (Chapter II), but none of them are foolproof, and all require the creator to do some

amount of work before the loss has occurred. Usage data collected at ODU shows that Warrick is

currently being used to reconstruct an average of 108 websites per month. Perhaps tools like Warrick

(after-loss recovery) provide greater immediate gratification than up-front preservation applications.

Until the fundamental qualities of the Web change that make publication permanent, it is likely that

a safety net like lazy preservation will always be needed.

2 CONTRIBUTIONS

This dissertation makes eight significant contributions to the field of digital preservation:

1) This dissertation identifies the pervasive problem of website loss that has been previously ad-

dressed by a priori solutions. A novel solution called lazy preservation is offered which allows

after-the-fact recovery for little to no work required for the content creator.

2) The WI is characterized in terms of its behavior to consume and retain new web content, and

the types of resources it contains. The overlap between the search engine caches of Ask, Google,

Live Search and Yahoo are compared with the Internet Archive.
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3) A model for resource availability is developed which defines the stages a web resource goes through

from its initial creation to its potential unavailability.

4) A new type of crawler is introduced: a web-repository crawler. The crawler’s architecture is

presented, interfaces for crawling web repositories are developed, rules for canonicalizing URLs

between web repositories are supplied, and three crawling policies are evaluated experimentally.

5) A statistical model is developed which can be used to measure the characteristics of a recon-

structed website along with a reconstruction diagram which can graphically summarize recon-

struction success. Other formulas are also developed which can account for varying degrees of

reconstruction success.

6) Experimental results confirm that websites that are “crawler friendly” are the most recoverable

from the WI. The three most significant variables that determine how successfully a web resource

will be reconstructed from the WI is Google’s PageRank for the website’s root page, the number

of hops from the root page to the resource and how long the resource has been available from

the same URL.

7) A novel solution to recovering a website’s server components is proposed and experimentally

validated.

8) A website reconstruction service was created which is currently being used by the public to

reconstruct more than 100 lost websites a month.

3 FUTURE WORK

There are a number of directions the work presented in this dissertation may be expanded.

3.1 Warrick Improvements

There are several improvements which could be made to Warrick which would increase its effective-

ness at recovering lost websites:

• Warrick currently uses only four web repositories for locating missing resources. Adding additional

repositories like Furl or Hanzo:Web would likely improve coverage.

• Warrick’s detection of URLs within HTML resources, JavaScript and Flash could be improved to

find potentially more recoverable resources.

• Warrick is currently unable to detect soft 404s, web pages that are returned to a crawler with

an HTTP 200 response instead of the proper 404 (not found) response [15]. These pages are

sometimes stored in the WI when a website removes previously existing pages or when a website’s

domain name expires. Warrick could use an algorithm like the one presented in [15] to detect and

reject these pages when reconstructing a website that has just been lost.
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3.2 Determining Loss

A potential area for future work involves automatically determining when a website has been lost.

If such a determination could be made, the website could be reconstructed immediately and saved

by a memory institution. Instead of preemptively saving every website, only websites which have

just been lost could be saved, thus decreasing the storage requirements needed for preserving a large

number of websites. This would require monitoring websites on a periodic basis and applying trend

analysis to detect significant shifts in the page “aboutness,” similar to the techniques applied in the

Walden’s Path Project [47].

Such a technique could also be used when reconstructing a website when repository copies of

a website are tainted. For example, when a website domain name is hijacked, its contents change

significantly. If Warrick could detect these significant changes, it could reject tainted resources from

deep repositories like IA.

3.3 Using Browser Caches

Browser caches are a significant source of potentially unrecoverable web resources. In fact, the

author once used a client’s browser cache to recover significant portions of the client’s lost website

when very little of the website was recoverable from the WI. There are several proposed methods of

accessing browser caches in peer-to-peer systems which, if implemented widely, could be used as a

starting point for enhancing Warrick’s ability to recover lost web resources [102, 177, 178].

3.4 Overlap Studies

The search engine/Internet Archive overlap experiment of Chapter IV used URLs sampled from the

search engines. Using a different set of URLs sampled from user requests would provide a better

measure for determining what URLs are missing from search engine caches and IA.
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APPENDIX A

WARRICK COMMAND-LINE SWITCHES

This appendix lists all the command-line switches used by Warrick. Many of these were borrowed

from Wget [65].

TABLE 28: Warrick command-line switches.
Switch Description

Startup:
-V, --version Display the version of Warrick
-h, --help Print this help
-ga, --google-api Use Google API instead of screen scraping (requires API key)
-gk, --google-key=KEY Specify the Google key to be used

-t, --terminate-file=FILE
Specify FILE to look for if wanting to terminate before recon-
struction is complete

Queries:

-ql, --query-limits=LIMITS
Specify the total number of queries that may be issued in a 24
hour period

-I, --initial-used-queries=Q
Specify the number of queries that have been previously used in
the past 24 hours

-nl, --no-lister-queries Do not issue lister queries

Logging:
-o, --output-file=FILE Log messages to FILE
-s, --summary-file=FILE Path to summary file (default uses URL to name file)
-d, --debug Print debugging information
-v, --verbose Print verbose information (this is the default)
-nv, --no-verbose Turn off verboseness

Download:
-c, --complete-recovery All resources found from lister queries are downloaded
-n, --number-download=N Specify the number of items N to be downloaded before quitting
-nc, --no-clobber Skip downloads that would download to existing files
-w, --wait=SECONDS Wait 5 +-SECONDS (random) between retrievals
-ic, --ignore-case Ignore the case of URLs
-D, --target-directory Directory to download the files to
-Y, --proxy Use a proxy server (uses environment variable HTTP PROXY)
-r, --recursive Specify recursive download
-k, --convert-links Make links in downloaded HTML point to local files

-v, --view-local
Add .html extension to HTMLized Word, PDF, Excel, etc. files
and make links in downloaded HTML point to local files

Resource accept/reject:

-dr, --date-range=BEG:END
Begin and end dates (yyyy-mm-dd) or single year (yyyy) for
resources in IA

-m, --most-recent
Select the most recent version of resource, not necessarily the
canonical version
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APPENDIX B

RECONSTRUCTED WEBSITES

This appendix lists the 309 websites that were used in the experiment from in Section 5.1, Chapter

VII. The first 303 URLs were crawled and reconstructed the first week, and the final six URLs were

added on subsequent weeks after the experiment had begun.

TABLE 29: Listing of 309 websites.
1. alaskarottweilerclub.tripod.com 41. nativenewsonline.org

2. areq.csq.qc.net 42. noleeo.com

3. around.lgs.free.fr 43. onepeoples.com

4. art.sdsu.edu 44. pacificcoastsoftball.com

5. bcsvaluations.com 45. pages.prodigy.net/robertmorgan

6. boyertile.com 46. people.freenet.de/cindytimmypage

7. capitolautoparts.com 47. promo-echecs.ifrance.com

8. cartsoftweb.com 48. royalrangers.ch

9. ci.pierre.sd.us 49. schmidtandbartelt.com

10. coders31.free.fr 50. shermanbuck.com

11. dshc43015.tripod.com 51. smackdabdesign.com/mednf

12. elbonetazo.iespana.es 52. spanish.correctauditing.org

13. espanol.geocities.com/ligatolima 53. spoilerman.free.fr

14. espot.ddl.net 54. sthafrica.lcmglobal.org

15. estradas.no.sapo.pt 55. stonemillmodels.com

16. fib.ma.cx 56. sundog.stsci.edu

17. filia.mazoku.org 57. talk-2me.com

18. guide.supereva.com/lingua_russa 58. tartans.byair.net

19. hjem.get2net.dk/ahome 59. timarre.50megs.com

20. hofmuseum.sinfree.net 60. torahacademy.us.nstempintl.com

21. home.earthlink.net/~d4s 61. users.actcom.co.il/~yeda

22. home.novoch.ru/~vlad 62. utenti.lycos.it/fratresvg

23. i.hsr.ch 63. www.24-7consulting.com

24. idp.bl.uk 64. www.2bone.com

25. jpimpressions.com 65. www.abyouthhockey.net

26. kageki.hankyu.co.jp/english 66. www.ac-s.co.uk

27. kambuworld.free.fr 67. www.acapulcorentacar.com

28. kaskader.keys.pl 68. www.agclinic.gr

29. kaybuena.com 69. www.agf-trier.de

30. komatsu-npocenter.or.jp 70. www.agls.uidaho.edu/ccc

31. laidmanproductions.com 71. www.al6xn.com

32. library.thinkquest.org/3903 72. www.albatrossgolf.se

33. lienrag.free.fr 73. www.alconix.com

34. marienhospital.de 74. www.alexneilmsp.net

35. mars.bw.qc.ca 75. www.alhabtoor-motors.com

36. meiseikan.com 76. www.alliancesolutions.co.uk

37. members.aol.com/garzarea 77. www.americanserviceco.com

38. members.tripod.com/~lvhs 78. www.amigorico.org

39. mm-world.gamesurf.tiscali.de/heroes3 79. www.amycarolwebb.com

40. myautobuyers.com 80. www.andreamagro.it
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TABLE 30: Listing of 309 websites continued.
81. www.andrelczyk.pl 131. www.daum-eickhorn.de

82. www.angel-flight.org 132. www.davismclay.com

83. www.annangrove-p.schools.nsw.edu.au 133. www.deoestgloria.com

84. www.antique-chinese-furnitures.com 134. www.depechemode-mp3.de

85. www.aoce.com
135. www.derbyshiremason.org/glossop_

henry_hall

86. www.apollocoms.co.uk 136. www.dewafelbakkers.com

87. www.applewave.co.jp 137. www.dghallortho.com

88. www.architektur-bauphysik.de 138. www.diedreifragezeichen.info

89. www.arts.adelaide.edu.au/historypolitics 139. www.djbarranch.com

90. www.audreystark.com 140. www.dumontbrothers.com

91. www.avrealty.com 141. www.duperemover.com

92. www.bacowka.piwniczna.iap.pl 142. www.duperon.com

93. www.balletnorth.com 143. www.e-signature.com

94. www.banderolieren.de 144. www.eastgoth.de

95. www.bankasia-bd.com 145. www.easybirthing.com

96. www.barnetconservatives.co.uk 146. www.edithsfloralshop.com

97. www.bearpaw.ab.ca 147. www.ekoparkpernat.org

98. www.bergsrockshop.com 148. www.elegantk.org

99. www.bjallen.com 149. www.elscingles.com

100. www.blessedjohnduckett.durham.sch.uk 150. www.elviras.dk

101. www.bluesource.at 151. www.emg-inge-werner.de

102. www.boatletteringshop.com 152. www.ep1.ruhr-uni-bochum.de

103. www.bowentherapytechnique.com 153. www.euroflexpad.com

104. www.bronx.go3.pl 154. www.f-center.net

105. www.brucebrownlee.com 155. www.farmerindia.com

106. www.call911.se 156. www.flytxt.com

107. www.calsakcolorants.com 157. www.foreclosuretrac.com

108. www.campistrouma.com 158. www.forestry.gov.gy

109. www.celtichorizon.com 159. www.forhiskids.org

110. www.ces-landtec.com 160. www.franzincarni.it

111. www.chichwys.com 161. www.freewebs.com/starvedofsense

112. www.chinon.co.jp/eng 162. www.frogislandbrewery.co.uk

113. www.chiponein.com 163. www.gaestehaus-siegfried.de

114. www.ci.barnegat.nj.us 164. www.genevacom.com

115. www.cigarettefilters.com 165. www.geocities.com/icebreakersteam

116. www.city.hamamatsu-szo.ed.jp/shinohara-e 166. www.gites-tarn.com

117. www.citycup.dk 167. www.gmg2005.com

118. www.climatecampaign.org 168. www.gotemba.ne.jp

119. www.cobobrothers.com 169. www.greensheetads.com

120. www.cofrentes.com 170. www.groovee.com.au

121. www.coll.mpg.de 171. www.groundround.com

122. www.connectem.uji.es 172. www.gzespace.com

123. www.contractmanager.biz 173. www.hausunterricht.org

124. www.cooperstownallstarvillage.com 174. www.hemtours.com

125. www.cramerairportparking.com 175. www.homeprorichmond.com

126. www.crawfordcountyil.com 176. www.hoosiervan.com

127. www.css-webdesign.co.uk 177. www.hymnia.dk

128. www.dartmoorbks.dabsol.co.uk 178. www.incoretec.com

129. www.dartmouth.edu/~riding 179. www.inspirationsdesigns.com.au

130. www.dataopen.com 180. www.ivs-freiburg.de
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TABLE 31: Listing of 309 websites continued.
181. www.jflowers.com 231. www.panzer.punkt.pl

182. www.joerg-schmitz-online.de 232. www.parkklinik-meersburg.de

183. www.jostvandykeferry.com 233. www.perfect10wines.com

184. www.juttamagic-key.de 234. www.plastyk.kielce.pl

185. www.katterugclub.nl 235. www.playingweb.com

186. www.kikori.org 236. www.princetonhcs.org

187. www.langfordcanoe.com 237. www.pronetworkcenter.com

188. www.lascanitas.de 238. www.proxan.de

189. www.lazerxtx.com 239. www.rasalam.com

190. www.learnrugbylaws.com 240. www.readyquip.com

191. www.libertyhorsetrailer.com 241. www.realestatecopies.com

192. www.logicdata.com 242. www.revelateur.be

193. www.macropixel.com 243. www.ritmo.ch

194. www.madacademy.com.au 244. www.rls2000.com

195. www.manaties.com 245. www.rondjenuland.nl

196. www.manna-vandaag.nl 246. www.rpaltd.co.uk

197. www.mark-stein.com 247. www.schachtermine.de

198. www.markgoodge.iofm.net/

stevewilliamssoccer_v2
248. www.scottaircraft.com

199. www.matem.unam.mx/whapde 249. www.seark.net/~rays

200. www.mccoy.org 250. www.senaiairport.com

201. www.mcnaystreet.childrencentre.org 251. www.setex-germany.com

202. www.mcplumbing.com 252. www.shipping-cases-now.com

203. www.meade.k12.ky.us/B-Town 253. www.silnirazem.plocman.pl

204. www.mebb.de 254. www.silvabelle.com

205. www.mece.net 255. www.slouch.tv

206. www.mediares.fr/sto 256. www.smallmarco.com

207. www.medicalsociety.org 257. www.smgfan.com

208. www.meganet.net 258. www.softcanarias.com

209. www.middle-earth.ru 259. www.sorensen.com.au

210. www.minorisa.es/gastronomia 260. www.sozedde.com

211. www.mrbox.co.uk 261. www.spenceschool.org

212. www.nast.gr 262. www.stadtmuseum.de

213. www.naturephotographs.com 263. www.stiftung-drittes-millennium.com

214. www.nealaw.com 264. www.sto-pavucina.cz

215. www.neiltanner.com 265. www.strumien.pl

216. www.newartgallery.net 266. www.summitautomotivegroup.com

217. www.newportirish.com 267. www.sungraph.co.uk

218. www.nikkigrogan.com 268. www.swgreens.com

219. www.northcincy.org 269. www.swtimes.com

220. www.nwclydes.com 270. www.taomusic.tv

221. www.objectrelations.org 271. www.terracottawarriors.com

222. www.oceanopolis.com 272. www.thacherrealestate.com

223. www.oceanridgeflorida.com 273. www.thaipressasso.com

224. www.oleificiodellorto.it 274. www.thoratec.com

225. www.oln.org 275. www.thriftlodgepetawawa.com

226. www.oregonsignworks.com 276. www.tirolerhof.erpfendorf.com

227. www.otrhobbyist.com 277. www.torikyo.ed.jp/kawasaki-e

228. www.oursaviorshartland.org 278. www.torontocpr.com

229. www.palemoon.com/RobertPlant01 279. www.tqu.jp

230. www.pallolaw.com 280. www.trailerservice.be
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TABLE 32: Listing of 309 websites continued.
281. www.travel-company.spb.ru 296. www.watda.org

282. www.trents.co.uk 297. www.weber.nl

283. www.triplemhighlandfarmllc.com 298. www.wertstoffzentrum-schwandorf.de

284. www.twiceasniceshop.nl 299. www.whirlywiryweb.com

285. www.twinklebulbs.com 300. www.williamstwp.org

286. www.uk.sage24.com 301. www.woodenclocks.co.uk

287. www.ultrafachschaft-biertechnologie.de 302. www4.tpgi.com.au/louise_a

288. www.ultrasoundadvice.co.uk 303. www5.ocn.ne.jp/~urkasuga

289. www.unitedskate.com 304. *users.tpg.com.au/louise_a
290. www.uv.es/cide 305. *www.angelflightmidatlantic.org
291. www.valvision.fr 306. *www.areq.csq.qc.net
292. www.veterinariomilano.it 307. *www.areq.qc.net
293. www.vetrotexeurope.com 308. *www.theresavilliers.co.uk
294. www.victoriahighlandgames.com 309. *www.thinkquest.org/library
295. www.vicyoungjr.com

∗ indicates URLs added after the beginning of the experiment.
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