
Website Reconstruction using the Web Infrastructure

[Extended Abstract]

Frank McCown
Old Dominion University

Computer Science Department
Norfolk, Virginia, USA 23529

fmccown@cs.odu.edu

ABSTRACT
Backup or preservation of websites is often not considered
until after a catastrophic event has occurred. In the face of
complete website loss, webmasters or concerned third par-
ties may be able to recover some of their website from the
Internet Archive. Other pages may also be salvaged from
commercial search engine (SE) caches if caught in time.

We introduce the concept of “lazy preservation”- digi-
tal preservation performed as a result of the normal opera-
tions of the Web infrastructure (search engines and caches).
We will investigate methods of how websites can be auto-
matically reconstructed from the Web infrastructure (WI)
by using a web-repository crawler. We propose to evalu-
ate and measure the effectiveness of various web-repository
crawler strategies and evaluate various methods for injecting
the generative functionality (e.g., CGI programs, databases,
etc.) of websites into the WI. We also propose to develop
methods for tracking resources as they move through the
WI and to characterize SE caches using random sampling.

1. INTRODUCTION
Digital preservation has been widely acknowledged to be

an important problem with few easy solutions. Most preser-
vation projects to date typically rely on refreshing (copy-
ing data onto newer media or systems), migration (trans-
ferring data to newer system environments) [41] and emu-
lation (replicating the functionality of an obsolete system)
[34]. Each of these strategies may involve a large institu-
tional investment of time and money focused on preserving
collections of known importance. For example, the Library
of Congress recently funded a $13.9M project through the
National Digital Information Infrastructure and Preserva-
tion Program (NDIIPP) in order to preserve “digital con-
tent relating to important people, events and movements
that have had a major impact on the nation’s history” [18].
We call these types of efforts in vitro digital preservation be-
cause of the limited scope, significant effort and controlled
environments necessary for their success.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL ’06 Chapel Hill, NC USA
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Other collections of unknown value may also be preserved
although in a somewhat random and half-hazard manor by
the “living web”. For example, consider a 1994 NASA re-
port (Figure 1) that has been refreshed and migrated to
other formats (PDF, PNG, HTML) other than its original
compressed PostScript. Only one of the links points to the
original 1994 location. This type of in vivo preservation
[12] which relies on the living web is not guaranteed by any
single institution or archive; it is rather the result of dis-
tributed efforts of missions of users, web administrators and
commercial services.

A major contributor to in vivo preservation is the Web
infrastructure (WI), the collection of commercial web search
engines (e.g., Google, Yahoo, MSN, etc.), personal web archives
(e.g., Furl.net and Hanzo:web), web archives operated by
non-profit companies (e.g., the Internet Archive’s “Wayback
Machine”) and research projects (e.g., CiteSeer and NSDL).
The WI supports refreshing and migrating of web resources,
often as side-effect of their intended purposes. Some mem-
bers of the WI that are in competition with each other (such
as Google, MSN and Yahoo) to increase their holdings will
continue to improve the utility of the WI. Although mem-
bers of the WI may come and go, the combined efforts of
the WI can ensure long term preservation of many web re-
sources.

We introduce the concept of lazy preservation- in vivo
preservation for websites that results from the normal op-
erations of the WI. We are aware of several instances when
lazy preservation was used for website reconstruction when
backups did not exist:

• The Internet Archive’s Wayback Forum contains sev-
eral postings from individuals who have lost their web-
site and had no backups [33]. They were wanting to
restore their websites from the Internet Archive.

• The WWW 2006 conference website was temporar-
ily inaccessible after a fire destroyed the Mountbatten
building at the University of Southampton (UK) [10].
The conference organizers ran a script to recover some
pages from the Google cache.

• In Dec 2005, Aaron Swartz created a tool called arcget
to recover a website from the Internet Archive that had
recently gone out of service [39]. Swartz was unaware
of our work at the time.

We suspect that lazy preservation will continue to be
needed. Although many organizations have the resources

3 remote & 4 cached versions

12 versions found

3 versions (2 nasa.gov & 1 mpg.de)
2 cached PDF versions

Figure 1: Refreshing and migrating occurring in the living Web

to perform backups, many individuals do not have the re-
sources or only think of backups after they have lost all their
data. It is not uncommon for web hosting services to tell
their customers: “ultimately you are responsible for back-
ing up your own data [6].” When a website ceases operation
due to death of the owner, lack of funding or other calamity,
third parties may rely on lazy preservation as the sole source
for website reconstruction.

We propose investigating the use of the WI for recon-
structing websites that have gone missing. Specifically, we
plan to investigate the following questions:

• How completely can websites be reconstructed from
the WI? (Section 4.2)

• What factors contribute to the success of website re-
construction? (Section 4.2)

• Which members of the WI are the most helpful for
website reconstruction? (Section 4.2)

• What methods can be used to recover the server-side
components of websites from the WI, and can such
methods be successfully and effectively implemented?
(Section 4.3)

• How can we track web resources as they are refreshed
and migrated through the WI? (Section 4.4)

• What resources are typically stored in SE caches, and
what factors contribute to resources not being cached?
(Section 4.5)

2. BACKGROUND AND RELATED WORK
The ephemeral nature of the Web has been widely ac-

knowledged. Even the casual Web user is familiar with web
pages going 404 (not being found). Koehler [16] provides
possibly the longest continuous study of URL persistence
using the same set of 361 URLs randomly obtained in De-
cember 1996. Other researchers have measured linkrot (in-
accessible URLs) based on subject matter [40] and their use
in academic citations [23] and digital libraries [26].

Many solutions to missing web resources have been of-
fered. Berners-Lee [4] has developed popular guidelines for
creating durable URLs, and indirection mechanisms like Per-
sistent URLs (PURLs) [36], handles [20] and Digital Object
Identifiers (DOIs) [27] have been developed to increase URL
longevity. Phelps and Wilensky [28] proposed the use of ro-
bust hyperlinks to find missing resources by using lexical sig-
natures, and Harrison [12] developed a system called Opal
which uses lexical signatures to aid users in finding missing
web resources from the WI.

These solutions focus on resources that change locations
on the Web. To combat web resources disappearing alto-
gether, researchers have typically focused on building web
archives. Brewster Kahle founded the Internet Archive (IA)
in 1996 as the first large-scale attempt to create an archive
of the publicly accessible Web [14]. Other institutions and
governments like the UK [2], Sweden [17] and Greece [19]
have since recognized the value of preserving portions of the
Web and are actively engaged in archiving culturally impor-
tant websites.

Commercial services like FURL (furl.net) and Spurl.net

Publisher’s cost
(time, equipment)

H Client-view Server-view

Furl/Spurl Filesystem
backups

Browser cache
InfoMonitor LOCKSS

Hanzo:web
TTApache iPROXY

Web archives
SE caches

H L H

Coverage of the Web

Figure 2: Publisher’s cost and Web coverage of
preservation systems/mechanisms

(spurl.net) have emerged recently that allow users to archive
selected web resources. Hanzo:web (hanzoweb.com) is a sim-
ilar service that easily allows an entire website to be archived.

Other non-commercial systems have addressed archiving
individual websites and web pages. LOCKSS [32] was cre-
ated to archive selected publishers’ websites for library use.
InfoMonitor archives the server-side components (e.g., CGI
scripts and datafiles) and filesystem of a web server [7].
Other systems like the Apache module TTApache [8] and
the proxy server iPROXY [31] archive requested pages from
a web server but not the server-side components.

In regards to commercial SEs, the literature has mostly
focused on measuring the amount of content they have in-
dexed (e.g., [24]) and determining how well they respond
to users’ queries (e.g., [22]). Lewandowski et al. [21] stud-
ied how frequently Google, MSN and Yahoo updated their
cached versions of web pages, but we are unaware of any re-
search that attempts to measure how quickly new resources
are added to and removed from commercial SE caches. As
far as we aware, our work [25] was the first to focus on the
use of SE caches for digital preservation.

Each of the Web preservation systems previously men-
tioned can be divided into two categories based on the level
of preservation they provide:

1. client view - This is the view the client is presented
after making an HTTP request for a web resource.

2. server view - These are the generative mechanisms or
server components (scripts, files, databases, etc.) that
are responsible for generating the client view of the
website.

Preserving the client view is generally sufficient for those
who are interested in what a particular website said or looked
like. Recovering the server view is often more important for
a webmaster that needs to recover the functionality of a lost
website. Of all the systems previously mentioned, only In-
foMonitor and filesystem backup mechanisms are designed
for recovering the server view.

The graph in Figure 2 maps the systems mentioned above
according to the website publisher’s relative cost (in time,
effort or equipment) to have his or her website preserved
and the coverage that the systems provide to the entire

Web. Furl and Spurl can be used to preserve much of the
Web, but they are not practical for an individual archiv-
ing an entire website. A browser cache will store some re-
quested resources, but it is impractical for a user to browse
every resource in a website. Other systems are dedicated
to preserving content from a particular website (TTApache,
InfoMonitor, filesystem backup) or a small group of sites
(LOCKSS). Systems like iPROXY may be configured to
crawl and archive multiple websites, but they cannot cover
nearly the breadth that the WI covers.

The shaded box of Figure 2 shows that search engines and
web archives provide wide coverage of digital preservation
services for the client view, but there is no such service pro-
vided for preservation of the server view. Lazy preservation
(LazyP) leverages SE caches and web archives to provide
high preservation coverage of the Web, and it requires no
work for the website creator except that the website contents
be accessible to a crawler (usually the de facto behavior).

We propose to find an equitable solution for reconstruct-
ing the server-side components of a website. For just a little
more effort, lackadaisical preservation (LackP) can be used
to support preservation of the server view. LackP will likely
require the publisher to install an Apache module and set
some configuration information in order to tell the mod-
ule which files may and may not be injected into the WI.
Once this installation and configuration is completed, there
is no need for the publisher to purchase additional hard drive
space, monitor backups and perform administrative duties
to keep their website backed-up.

3. PRELIMINARY WORK
We have performed a preliminary investigation into using

the WI for website reconstruction in [25] and give further
details in [37]. Our work focused on examining the caching
behavior of search engines on several decaying web collec-
tions and on demonstrating the feasibility of website recon-
struction from the WI using a web-repository crawler.

3.1 Search Engine Caching
Search engines like Google, MSN and Yahoo provide ac-

cess to their cached resources in case the original resource
is temporarily inaccessible. Text-based resources like PDF,
Word documents, Excel spreadsheets, etc. are often con-
verted into HTML before being made available in the SE
cache. Images are cached as thumbnails. Unlike SEs, IA
stores all resources in their canonical form.

In order to measure how quickly resources enter and leave
the caches of Google, MSN and Yahoo, we created 4 syn-
thetic web collections consisting of a few hundred HTML,
PDF and image resources. The web collections were de-
ployed in June 2005 at four different locations. We provided
links to the web collections from previously crawled pages
in order to entice the indexing of our web collections.

We deleted resources from the collections on a daily basis
for 90 days until most of the collections were gone. We
examined the server logs to determine when the resources
were crawled and performed daily queries to each SE to
determine when the resources entered and left the SE caches.

From a website reconstruction perspective, Google out-
performed MSN and Yahoo in nearly every category. Google
cached the highest percentage of HTML resources (76%) and
took only 12 days on average to cache new resources from
three of the web collections. On average, Google cached

A A

D

B C

E F G

B’ C’

E

F

added
 20% W’ W changed

33%

identical
50%

missing
17%

Figure 3: Lost website (left), reconstructed website
(center) and reconstruction diagram (right)

HTML resources for the longest period of time (76 days),
consistently provided access to the cached resources (86%),
and were the slowest to remove cached resources that were
deleted from the web server (51 days). Although Yahoo
cached more HTML resources and kept the resources cached
for a longer period than MSN, the probability of accessing
a resource on any given day was only 53% compared to 89%
for MSN.

3.2 Reconstructing Websites
A website can be represented as a graph G = (V, E) where

each resource ri (HTML, PDF, image, etc.), identified by a
URI, is a node vi, and there exists a directed edge from vi

to vj when there is a hyperlink or reference from ri to rj .
The left side of Figure 3 shows a web graph representing
some website W if we began to crawl it beginning at A.
Suppose W was lost and reconstructed forming the website
W ′ represented in the center of Figure 3.

For each resource ri in W we may examine its correspond-
ing resource r′i in W ′ that shares the same URI and cate-
gorize r′i as identical (r′i is byte-for-byte identical to ri),
changed (r′i is not identical to ri), or missing (r′i could not
be found in any web). We would categorize those resources
in W ′ that did not share a URI with any resource in W
as added (r′i was not a part of the current website but was
recovered due to a reference from r′j).

Figure 3 shows that resources A, G and E were recon-
structed and are identical to their original versions. An older
version of B was found (B’) that pointed to G, a resource
that does not currently exist in W . Since B’ does not refer-
ence D, we did not know to recover it. It is possible that G
is actually D renamed, but we do not test for this. An older
version of C was found, and although it still references F, F
could not be found in any web repository.

A measure of change between the lost website W and the
reconstructed website W ′ can be described using the follow-
ing difference vector:

difference(W, W ′) =

�
Rchanged

|W | ,
Rmissing

|W | ,
Radded

|W ′|

�
(1)

For Figure 3, the difference vector is (2/6, 1/6, 1/5) =
(0.333, 0.167, 0.2). The best case scenario would be (0,0,0),
the complete reconstruction of a website. A completely un-
recoverable website would have a difference vector of (0,1,0).

The difference vector for a reconstructed website can be
illustrated as a reconstruction diagram as shown on the
right side of Figure 3. The changed, identical and missing
resources form the core of the reconstructed website. The
dark gray portion of the core grows as the percentage of
changed resource increases. The hole in the center of the
core grows as the percentage of missing resources increases.
The added resources appear as crust around the core. This

representation was used in our website reconstruction ex-
periments reported in [25].

3.3 Web Repository Crawler
We developed a web-repository crawler called Warrick to

automate the reconstruction of websites from IA, Google,
MSN and Yahoo. In August 2005 we downloaded 24 hand-
picked websites that varied on the basis of top-level domain
name, size, subject and file type makeup. All files needed
to produce each web page were downloaded (HTML, style
sheets, external JavaScript files, images, etc.). Immediately
after downloading the websites, we ran Warrick to recon-
struct all 24 websites and compared the downloaded sites
with the reconstructions.

We were able to recover more than 90% of the original
resources from a quarter of the 24 websites. On average
we were able to recover 68% of the website resources (me-
dian=72%). Of those resources recovered, 30% of them on
average were not byte-for-byte duplicates. A majority (72%)
of the ‘changed’ text-based resources were almost identical
to the originals (having 75% of their shingles [5] in com-
mon). 67% of the 24 websites had obtained additional re-
sources when reconstructed which accounted for 7% of the
total number of resources reconstructed per website.

A majority (92%) of the resources making up the origi-
nal websites were HTML and images. We were much more
successful at recovering HTML resources than images; we
recovered 100% of the HTML resources for 9 of the websites
(38%).

Google contributed the most to each website reconstruc-
tion, providing on average 44% of the resources to each web-
site and failing to contribute to only one website. MSN was
second, providing on average 30% of the resources; IA was
third with 19%, and Yahoo was last with a 7% contribution
rate.

4. PROPOSED WORK

4.1 Warrick Enhancements
After our preliminary work using Warrick to reconstruct

24 websites, we recognized several improvements that could
be made to Warrick to reduce the number of issued queries
and improve URL normalization.

Search engines often implement a search parameter called
‘site:’ which tells a SE to return all the URLs it has indexed.
IA may also be queried using an undocumented feature to
list all stored URLs for a particular website. We shall call
these types of queries lister queries.

There are two advantages of using lister queries: 1) discov-
ery of URLs that we may not be aware of by just examining
links in recovered pages, and 2) avoiding unnecessary queries
when we know a particular resource is not stored in a web
repository.

The use of lister queries allows us to reconstruct a website
using one of three web crawling policies:

1. Näıve Policy - Reconstruct without performing lister
queries.

2. Exhaustive Policy - Recover all resources that are
produced by lister queries.

3. Knowledgeable Policy - Recover only resources dis-
covered through page scraping, but use lister queries
to prevent unnecessary web repository queries.

We would like to test these crawling policies on the 24
websites that we used in our preliminary reconstructions to
see what effects it might have on our reconstructions.

There are other web repositories (e.g., Stanford’s Web-
base [13], Cornell’s Web Laboratory [1], and hanzo:web) and
SE caches (e.g., ask.com, gigablast.com, and incywincy.com)
that could be useful for augmenting lazy preservation. We
would like to reduce the work required to add additional web
repositories to Warrick by developing a standard interface
or API that could be implemented by a web repository. The
repository could implement the interface itself or a binding
could be implemented by interested third parties. Providing
a standard API will lower participation constraints in lazy
preservation.

4.2 Factors Influencing Reconstruction
Our preliminary experiment did not reveal any statisti-

cally significant results that would determine if a website’s
size or Google’s PageRank would influence its recoverability
from the WI. We would like to download and reconstruct
a large number of randomly selected websites and perform
regression analysis to determine if there are any factors that
may determine the success of reconstructing a website.

4.2.1 Methodology
Instead of hand-picking the websites to be reconstructed,

we need to select a random sample from the Web. One
method would be to randomly sample from DMOZ (http://
dmoz.org). We could download a suitable number websites
and reconstruct them using the knowledge policy. For each
website we would need to manually record the PageRank
(using the Google toolbar). We would need to monitor the
sites for several months to measure page change rates, and
we would need to perform several reconstructions to study
how they change over time.

4.2.2 Evaluation
After reconstructing the websites, a number of character-

istics will need to be evaluated to determine if they con-
tribute to the success of website reconstruction: PageRank,
website size, MIME types, page depths, dynamic pages and
page change rates. We would like to develop predictive mod-
els for determining how much of a website could be recovered
from the WI if lost today.

We are also interested in determining which web reposi-
tories contributed the most resources to website reconstruc-
tion, and how many queries did web repositories need to
handle versus their usefulness for website reconstruction.

4.3 Recovery of Web Server Components

4.3.1 Overview
Lazy preservation relies on web repositories which are fo-

cused on storing static website files or the static pages pro-
duced by server-side mechanisms. Dynamically generated
pages produced by PHP, CGI, JSP, ASP and the like are
increasingly common. Recovery of these server-side compo-
nents along with the data files, databases and binary ex-
ecutables is necessary for complete website reconstruction.
We call this lackadaisical preservation because it requires a
little more effort than lazy preservation.

We would like to study several methods for exposing the
server-side components to surface web crawlers so they may

be crawled just as easily as static web pages are crawled.
This could be as simple as exposing a compressed tar file to
a web crawler, but SE crawlers do not crawl such files due to
their lack of indexable content. We must instead investigate
methods that could be used to inject server-side components
into web pages that SE crawlers do crawl and cache.

Our preliminary research into examining website recon-
struction revealed that we were most successful at recovering
HTML resources. HTML resources have several character-
istics that make them an excellent format for storing server-
side components: 1) HTML resources are text-based unlike
other popular web resources (e.g., images, PDFs, Word doc-
uments, etc.) that use binary formats, 2) all web repositories
store canonical versions of HTML resources but usually not
others, and 3) comments can be easily injected into HTML
resources without affecting the overall appearance of the re-
source in a browser.

4.3.2 Injection Techniques
There are three techniques that could be used for injecting

server-side components into HTML resources: 1) insert an
entire encrypted server file into HTML comments, 2) divide
an encrypted server file into smaller parts and insert each
part into separate HTML files, and 3) compute erasure codes
for an encrypted server file and inject the codes into HTML
files.

Encryption is used to ensure that the server file is not
readable to anyone but the publisher (security aspects are
discussed in section 4.3.5). Method 1 may make HTML files
too large for a web server to index. Search engines in the
past have only indexed portions of large HTML files. Also, if
the HTML file containing the server file was not recoverable,
the server file would be lost.

Method 2 would allow us to create smaller HTML files
which would have a higher likelihood of being cached. The
problem with this method is that all HTML files containing
the server file sections must be recovered to ensure the re-
covery of the server file. This would especially be important
for binary server files where missing even one byte would
make the file unusable. Method 3 fixes this problem by al-
lowing complete recovery of the server file by only recovering
a subset of the HTML files.

The technique for computing erasure codes, specifically
Reed-Solomon coding, has been frequently used in RAID
systems where portions of files are distributed among mul-
tiple devices to prevent loss of data [29]. They have also
been used in secret-sharing systems [15] and for information
dispersal [30].

4.3.3 Injecting Server Files into HTML Resources
Figure 4 shows an overview of how a server file could be

injected into web pages and later be recovered from a SE
cache. Steps a-d are performed when a server file is created
or changed. Steps e-h are performed when needing to recover
the server-side file.

a) Encrypt the file using a secret key known only to the
webmaster or other trusted parties. The encrypted file
will be base 64 encoded so it can easily be inserted into
web pages as text.

b) Compute erasure codes for the encrypted file and break
the file into n pieces (chunks) where recovery of any r

(b) (c) (d) (e) (f) (g)
p1

p5

pr

file

1A
bE
+4
=a
Gu
90
7v
dj

Search
Engine
Cache

1A
bE
+4
=a
Gu
90
7v
dj

c1

c2
c3

. . .

cn

file

(a)
p1 c1

(h) p2
p3 c5

. . .

pm cr

Figure 4: Recovery of encrypted server-side files
from SE caches

chunks allows for complete recovery of the encrypted
file.

c) Insert each chunk and metadata into m HTML files
(where n ≤ m).

d) Wait for SEs (or other web repositories) to crawl and
cache the HTML files.

e) Recover as many HTML files from SE caches as possi-
ble.

f) Extract available chunks and metadata from the HTML
files.

g) If at least r chunks have been recovered, reconstruct
the encrypted file from the erasure codes.

h) Decrypt the encrypted file using the secret key.

Research needs to be performed to measure optimal values
of n and r for a given website. The values of n and r are
at odds with each other. Ideally we want to put as little
encoded data into each HTML resource as possible (large
values of n) but at the same time we want to minimize the
number of chunks that we need to recover (small values of
r) which requires n to be lower.

We need to research the values of n and r as a function of
a website’s indexable size. Websites with a small number of
pages will require larger amounts of data per page. Larger
websites will require less of a load per page.

4.3.4 Strategies for Resource Acquisition
We would like to investigate various methods for server-

side injecting and measure their success of being stored by
various web repositories. One method that could be used
is to create “robot vaults”, pages that are designed for only
robots to crawl. These pages could be revealed to a crawler
using cloaking or through a “robots only” link from a web-
site’s host page. The pages would consist of simple HTML
along with the embedded portions of server files. We would
need to carefully consider the design of the pages to make
sure a SE would not reject the pages as spam. Changes
to any server files would require automated updating of the
robot vault to reflect the changes.

Another method would involve injecting the server file
portions into “real” pages. Static pages that reside on the
web server could be injected during low server activity pe-
riods. Or injections could be made dynamically when pages
are being requested from the web server. The benefit of this
method is that we would not run the risk of having our pages

rejected as spam. We could run into problems though if the
amount of available real pages to be crawled was very small
and large server files had to be injected into a small number
of pages. Such a consideration is not necessary in a robot
vault where we can control the number of available pages to
be crawled.

4.3.5 Security Considerations
There are several security-related concerns which must

be addressed by our injection schemes. How will we keep
server files secure from unauthorized access when they are
injected into the publicly accessible WI? What server files
are suitable for injected into the WI? How can server files be
recovered if the password is lost or the webmaster who was
responsible for the website has deceased or will not divulge
the password?

4.3.6 Repository Antagonism
Cloaking, the serving of different content for web crawlers

than for regular browsers, is a controversial topic [38]. Search
engines often penalize web sites that employ cloaking (when
detected) by removing websites from their index. If we em-
ploy injection of server encodings into web pages that are
crawled by web repositories only, we risk the entire website
being removed from the web repository. This issue will need
to be studied further.

If many users adopt the server-side injection techniques
we are proposing, search engines are likely to resent the ex-
tra load it places on their services. They may begin to use
techniques to remove the encoding blocks from their repos-
itories. We will therefore need to investigate methods that
will allow us to “hide” encoded blocks in the HTML, to make
it difficult for web repositories to automatically detect and
remove the encoded blocks.

4.3.7 Evaluation
An effective evaluation of our system will involve the com-

plete recovery of a website that uses a significant number
of server-side components to function. We propose to cre-
ate two websites using EPrints software [9] with a few hun-
dred resources in each. One will use server-side injection
techniques, and the other will not. We will attempt to re-
construct the websites on a weekly basis and compare the
reconstructions. Once the “injection” site has been ade-
quately crawled by at least one web repository, we would
expect complete recovery of all server-side components.

4.4 Tracking Resources

4.4.1 Overview
For some resources that appear in the WI, it is trivial to

determine where and when the resource was obtained. For
example, a resource that appears in Google’s cache can be
mapped to an entry in a web server log where an http GET
request was received from a Google-owned IP address with
the word ‘Googlebot’ in the user agent field. Other web
repositories may rely on third parties for web crawling. If
the third party is not known, it can be difficult to correlate
the request for a particular resource to the existence of the
resource in a web repository. Sometimes the server logs are
not even available to determine if a resource was crawled.
We ran into this problem during our preliminary study when
the server logs were lost for several days. Without such data,

it impossible to measure how quickly a resource has been
crawled.

If a resource that is recovered from a web repository could
reveal metadata about when it was crawled and by whom
(IP address and user agent), there would be no need for
analysis of web server logs to determine this information.
We would like to explore the possibility of creating a mech-
anism for tagging resources as they are requested.

4.4.2 Methodology
We would like to develop a tagging mechanism (possibly

as a server CGI or Apache module) that would intercept an
http GET request and embed the request metadata directly
into the resource before returning it in the http response.
We could evaluate several strategies for injecting metadata
into a resource: 1) inject the metadata directly into the re-
source in a human-readable form, 2) inject the metadata
directly into the resource in a format that only we can un-
derstand, and 3) inject an identifier into the resource that
can be mapped back to a log file entry containing the meta-
data.

4.4.3 Evaluation
In order to validate the effectiveness of our tracking mech-

anism, we could use it to verify the Search Engine Partner-
ship Chart that is produced by Ihelpyou Inc. [35]. This
complex chart shows which companies supply search results
to a variety of search engines. Compiling such a chart is
likely done by combing through publicly available informa-
tion on company websites, through contact with individuals
with inside information and by other evidence. The accu-
racy of such charts are difficult to verify.

We could produce a small number of tracking pages with
an embedded globally unique identifier and perform daily
queries to a variety of web repositories to see if they have
indexed our pages. Each page could contain a “quote of
the day” or other dynamically produced content so that it
would be unique for each visitor. We could use the results
of the repository queries to map the crawler-repository re-
lationships that our data uncovers.

4.5 Characterization of Search Engine Caches
Although we know a lot about the archived material in

the IA, we know very little about the type of content that
is available in the SE caches; there has been no in depth
analysis that we are aware of except the exploratory research
we performed in [25]. Questions which need to be answered
are:

• What percentage of resources that are indexed are also
available in a SE cache?

• What are the main characteristics of resources (type,
size, age) found in SE caches?

• Do the http Cache-control directives ‘no-cache’ and
‘no-store’ stop resources from being cached?

• How do different SE caches compare?

• How prevalent is the use of NOARCHIVE meta tags
to keep HTML pages from being cached?

In order to answer these questions, we need to randomly
sample URLs from a variety of SEs [3] and determine if the

URLs are cached or not. We need to also request a live ver-
sion of the resource to see how old the cached resource is (if
that can be determined) and to see if there are any charac-
teristics about the document that would keep it from being
cached (e.g., use of the ‘no-cache’ directive, NOARCHIVE
meta tag, etc.).

The results of our sampling could be combined with recent
measurements of search engine size [11] to determine the
total number of resources cached on the entire Web. We
could also perform an overlap analysis with IA which has
not been done before.

5. CONCLUSIONS
We have defined a new type of digital preservation, lazy

preservation, which exists in the living Web. Lazy preserva-
tion is a low-cost, high-coverage form of preservation with
no quality-of-service guarantees. The research outlined in
this paper will allow us to qualitatively evaluate how much
preservation is being performed for little or no work on
behalf of the typical website. At the completion of this
research, we will have demonstrated the lazy preservation
technique, provided a reference implementation and charac-
terized SE caching behavior. The major contribution of this
work would be the successful implementation and evaluation
of lackadaisical preservation which will allow the function-
ality of a web server to be recovered with little cost to the
website maintainer.

We do not suggest that lazy and lackadaisical preservation
are ideal preservation schemes, but they may be the only
form of preservation available for third parties and in an
emergency.

6. ACKNOWLEDGEMENTS
I would like to thank my advisor, Dr. Michael L. Nel-

son, for his guidance in this research and for reviewing this
abstract.

7. REFERENCES
[1] W. Y. Arms, S. Aya, P. Dmitriev, B. Kot, R. Mitchell,

and L. Walle. A research library based on the
historical collections of the internet archive. D-Lib
Magazine, 12(2), Feb 2006.

[2] S. Bailey and D. Thompson. UKWAC: Building the
UK’s first public web archive. D-Lib Magazine, 12(1),
2006.

[3] Z. Bar-Yossef and M. Gurevich. Random sampling
from a search engine’s index. In Proceedings from
WWW ’06, pages 367–376, 2006.

[4] T. Berners-Lee. Cool URIs don’t change. 1998.
http://www.w3.org/Provider/Style/URI.html.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks and ISDN Systems, 29(8-13):1157–1166,
1997.

[6] Computer Tyme Web Hosting.
http://www.ctyme.com/hosting/.

[7] B. F. Cooper and H. Garcia-Molina. Infomonitor:
Unobtrusively archiving a World Wide Web server.
International Journal on Digital Libraries,
5(2):106–119, April 2005.

[8] C. E. Dyreson, H. Lin, and Y. Wang. Managing
versions of web documents in a transaction-time web
server. In Proceedings from WWW ’04, pages 422–432,
2004.

[9] Eprints. http://www.eprints.org/.

[10] Fire destroys top research centre. Oct 31 2005.
http://news.bbc.co.uk/2/hi/uk news/england/

hampshire/4390048.stm.

[11] A. Gulli and A. Signorini. The indexable web is more
than 11.5 billion pages. In Proceedings from WWW
’05, pages 902–903, May 2005.

[12] T. L. Harrison. Opal: In vivo based preservation
framework for locating lost web pages. Master’s thesis,
Old Dominion University, 2005. http://www.cs.odu.
edu/∼tharriso/thesis/writeup/THESIS final.pdf.

[13] J. Hirai, S. Raghavan, H. Garcia-Molina, and
A. Paepcke. WebBase: a repository of web pages. In
Proceedings of the 9th international WWW conference
on Computer networks, pages 277–293, 2000.

[14] B. Kahle. Preserving the Internet. Scientific
American, 276(3):82–83, March 1997.

[15] E. D. Karnin, J. W. Greene, and M. E. Hellman. On
secret sharing systems. IEEE Transactions on
Information Theory, 29(1):35–41, 1983.

[16] W. Koehler. A longitudinal study of web pages
continued: A consideration of document persistence.
Information Research, 9(2), 2004. Available at
http://informationr.net/ir/9-2/paper174.html.

[17] Kulturarw - Sweden’s Web archive. 2006.
http://www.kb.se/kw3/.

[18] G. Lamolinara. Library of Congress announces awards
of $13.9 million to begin building a network of
partners for digital preservation. 2004.
http://www.digitalpreservation.gov/index.php?

nav=4&subnav=2.

[19] C. Lampos, M. Eirinaki, D. Jevtuchova, and
M. Vazirgiannis. Archiving the Greek Web. 4th
International Web Archiving Workshop (IWAW’04),
September 2004.

[20] L. Lannom. Handle system overview. In 66th IFLA
Council and General Conference, 2000. http:
//www.ifla.org/IV/ifla66/papers/032-82e.htm.

[21] D. Lewandowski, H. Wahlig, and G. Meyer-Beautor.
The freshness of Web search engines’ databases.
Journal of Information Science, 32(2), 2006.

[22] F. McCown, J. Bollen, and M. L. Nelson. Evaluation
of the NSDL and Google search engines for obtaining
pedagogical resources. In Proceedings from ECDL
2005, pages 344–355, 2005.

[23] F. McCown, S. Chan, M. L. Nelson, and J. Bollen.
The availability and persistance of web references in
D-Lib Magazine. 5th International Web Archiving
Workshop (IWAW’05), September 2005.

[24] F. McCown, X. Liu, M. L. Nelson, and M. Zubair.
Search engine coverage of the OAI-PMH corpus. IEEE
Internet Computing, 10(2), Mar/Apr 2006.

[25] F. McCown, J. A. Smith, M. L. Nelson, and J. Bollen.
Reconstructing websites for the lazy webmaster.
Technical report, Old Dominion University, 2005.
http://arxiv.org/abs/cs.IR/0512069.

[26] M. L. Nelson and B. D. Allen. Object persistence and

availability in digital libraries. D-Lib Magazine, 8(1),
2002.

[27] N. Paskin. E-citations: Actionable identifiers and
scholarly referencing. Learned Publishing,
13(3):159–168, 2002.

[28] T. A. Phelps and R. Wilensky. Robust hyperlinks cost
just five words each. Technical Report
UCB/CSD-00-1091, EECS Department, University of
California, Berkeley, 2000.

[29] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software
Practice and Experience, 27(9):995–1012, 1997.

[30] M. O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal
of the ACM, 36(2):335–348, 1989.

[31] H. C. Rao, Y. Chen, and M. Chen. A proxy-based
personal web archiving service. SIGOPS Oper. Syst.
Rev., 35(1):61–72, 2001.

[32] V. Reich and D. S. Rosenthal. LOCKSS: A permanent
web publishing and access system. D-Lib Magazine,
7(6), 2001.

[33] A. Ross. Internet Archive forums: Web forum posting.
October 2004. http://www.archive.org/iathreads/
post-view.php?id=23121.

[34] J. Rothenberg. Avoiding Technological Quicksand:
Finding a Viable Technical Foundation for Digital
Preservation. Number CLIR Report #77. Council on
Library and Information Resources, Washington, DC,
USA, 1999.

[35] Search engine partnership chart. http:
//www.ihelpyou.com/search-engine-chart.html.

[36] K. Shafer, S. Weibel, E. Jul, and J. Fausey. Persistent
uniform resource locators. PURLs.

[37] J. A. Smith, F. McCown, and M. L. Nelson. Observed
web robot behavior on decaying web subsites. D-Lib
Magazine, 12(2), Feb 2006.

[38] D. Sullivan. Ending the debate over cloaking.
February 2003. http://searchenginewatch.com/
sereport/article.php/2165231.

[39] A. Swartz. arcget: Retrieve a site from the Internet
Archive, Dec 2005.
http://www.aaronsw.com/2002/arcget/.

[40] M. A. Veronin. Where are they now? A case study of
health-related web site attrition. Journal of Medical
Internet Research, 4(2), 2002.

[41] D. Waters and J. Garrett. Preserving digital
information: Report of the task force on archiving of
digital information. Technical report, 1996.
http://www.rlg.org/ArchTF/.

