
Evaluation of Crawling Policies for a Web-Repository
Crawler

Frank McCown
Old Dominion University

Computer Science Department
Norfolk, Virginia, USA 23529

fmccown@cs.odu.edu

Michael L. Nelson
Old Dominion University

Computer Science Department
Norfolk, Virginia, USA 23529

mln@cs.odu.edu

ABSTRACT
We have developed a web-repository crawler that is used for
reconstructing websites when backups are unavailable. Our
crawler retrieves web resources from the Internet Archive,
Google, Yahoo and MSN. We examine the challenges of
crawling web repositories, and we discuss strategies for over-
coming some of these obstacles. We propose three crawling
policies which can be used to reconstruct websites. We eval-
uate the effectiveness of the policies by reconstructing 24
websites and comparing the results with live versions of the
websites. We conclude with our experiences reconstructing
lost websites on behalf of others and discuss plans for im-
proving our web-repository crawler.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Measurement, Experimentation, Design

Keywords
digital preservation, website reconstruction, crawler policy,
search engine

1. INTRODUCTION
When a website is lost due to a hard drive crash, file sys-

tem failure, virus or hacking, a webmaster may breathe a
sigh of relief if she has been diligent in backing-up her site.
Unfortunately, backups are often considered only after a
catastrophic loss has occurred. In cases such as negligence,
fire or death of the website owner, backups are often unavail-
able for recovering a website. When a website is lost and
no backups exist, webmasters and third parties often turn
to the Internet Archive (IA) “Wayback Machine” for help.
Although IA may be of assistance, their index is at least six

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of HT 2006.
HT’06, August 22–25, 2006, Odense, Denmark.
Copyright 2006 ACM 1-59593-417-0/06/0008 ...$5.00.

months out-of-date [26], and their best-effort approach may
miss numerous websites and web resources. More recent
copies of missing web content may be found in the caches of
commercial search engines like Google, MSN and Yahoo.

We have built a new type of crawler, a web-repository
crawler, that is used for reconstructing lost websites when
backups are unavailable [34, 49]. Unlike a traditional web
crawler, a web-repository crawler retrieves web resources
from web repositories. Web repositories are web archives
(e.g., the Internet Archive) and search engine caches (e.g.,
Google, Yahoo, MSN) that contain web resources that are
accessible using a direct URL. Like a traditional web crawler,
a web-repository crawler must download resources system-
atically and find links to other related resources.

There are many challenges for a web-repository crawler:
efficiently requesting web resources from web repositories,
finding links to missing resources, and evaluating which re-
source to keep when several versions of the same resource
have been recovered. The first two issues are explored in
more detail in this paper.

We describe an experiment evaluating three different crawl-
ing policies for our web-repository crawler named Warrick.
In early 2006 we downloaded 24 websites that varied in size,
subject matter, MIME types and top-level domains. We
then reconstructed three different versions of each website
using three different crawling policies. We compared the
downloaded versions with the reconstructed versions and
found the policies to significantly affect the number and
type of resources recovered and the number of repository
requests that were issued. We show the results of our analy-
sis and discuss our experiences reconstructing three websites
which had been lost. We conclude with a discussion of future
improvements for our web-repository crawler and research
goals in reconstructing websites.

2. BACKGROUND AND RELATED WORK
A crawler is a program that repeatedly downloads and

stores web resources, typically in batch mode. One or more
seed URLs are initially placed in the crawl frontier. The
crawler retrieves a URL from the frontier, downloads the
web resource, extracts URLs from the downloaded resource
and adds the new URLs to the frontier. The crawler contin-
ues in this manner until the frontier is empty or some other
condition causes it to stop. The crawler may extract URLs
from the frontier based on some prioritization scheme, and
the crawler typically adds URLs to the frontier that meet
some predefined criteria (e.g., URLs less than n levels deep
that point to resources in the x domain).

Web crawling is useful for a variety of purposes. For ex-
ample, search engines use crawling to build their indexes,
researchers use crawling to measure properties of the Web,
businesses use crawling to mine data about their competi-
tors, and archivists use crawling to populate their web archives.

Web crawling has mainly been studied in the context of
search engines, web characterization, web archiving and the
deep web. Search engines are interested in using crawlers
that keep their index fresh [1, 11, 18, 52] and populated with
the most popular pages [3, 10, 38]. Due to the enormous
size of the Web, researchers have increasingly focused on
developing crawlers that can produce large crawls quickly
through distributed and parallel crawling approaches [12,
24, 47]. Work has also focused on identifying duplicate web
content [13, 20] and web spam [19] during crawling to avoid
populating search engine indexes with low quality pages.

Web characterization is focused on measuring properties
of the Web [41] or subsets of the Web [2, 22]. Here the focus
is on the crawling policies or strategies used to produce an
accurate representation of the Web [14, 46].

Web archivists want to preserve the Web for posterity and
research, and they employ crawlers that are skilled at pro-
ducing deep crawls of websites [36, 48]. Focused or topical
crawlers may be used by archivists and others that seek out
only Web resources that pertain to a specific topic [9, 17,
37] or language [27].

Crawling the deep or hidden web is appealing on multi-
ple fronts because of the high-quality resources that cannot
be found through traditional crawling [6]. Efforts to crawl
the deep web have focused on performing queries on Web
search interfaces using human-assisted techniques [29, 30,
45] and automated methods [40]. Other mechanisms like
Google Sitemaps [23] and mod oai [39] attempt to discover
a website’s resources without traditional web crawling.

The literature is scant in reference to web-repository crawl-
ing. As far as we know, our work in [34, 49] was the first to
address the possibility of reconstructing websites by crawling
web archives and search engine caches. Others have com-
pared crawling policies or strategies for focused crawlers [35],
general content crawlers [14] and crawlers maintaining fresh
or popular pages [10, 11, 38]. This work compares crawling
policies used to enhance web-repository crawling.

Investigation of web-repository crawling is part of a larger
goal of evaluating the Web Infrastructure (WI) as a preser-
vation strategy. The WI is composed of commercial web
search engines (e.g., Google, Yahoo, MSN), personal web
archives (e.g., Spurl.net and Hanzo:web), web archives op-
erated by non-profit companies (e.g., the Internet Archive)
and research projects (e.g., CiteSeer and NSDL). Most preser-
vation strategies involve some form of refreshing and mi-
grating [50]. The WI actively engages in refreshing and mi-
grating web resources, often as a natural by-product of their
everyday operations. Many of the issues involved in preserv-
ing web pages are addressed by Marshall and Golovchinsky
[32] when preserving literary hypertext. We have recently
harnessed the WI for automatically locating missing web
pages [25].

3. RECONSTRUCTING WEBSITES

3.1 Definition
We define a reconstructed website to be the collection

of recovered resources that share the same URIs as the re-

A A

D

B C

E F G

B’ C’

E

F

added
 20% W’ W changed

33%

identical
50%

missing
17%

Figure 1: Lost website (left), reconstructed website
(center) and reconstruction diagram (right).

sources from a lost website or from some previous version of
the lost website. The recovered resources may be equivalent
to, or very different from, the lost resources. For websites
that are composed of static resources, recovered resources
would be equivalent to the files that were lost. For sites
produced dynamically using CGI, PHP, etc., the recovered
resources would be equivalent to the client’s view of the re-
sources and would be useful to the webmaster in rebuilding
the server-side components. The server-side components are
currently not recoverable from web repositories (see Section
6).

Our web-repository crawler is only able to recover content
that can be identified uniquely by a URI. Content that is dy-
namically produced but is not uniquely identified by a URI
presents difficulty for web repositories that rely on URIs for
identifying distinct resources. Other mechanisms like the
robots exclusion protocol (robots.txt), NOARCHIVE meta
tags, session IDs, password-protection, Flash pages and links
generated by JavaScript may prevent or hinder web repos-
itories from storing many web resources. In light of these
difficulties, search engines like Google offer tips for webmas-
ters to make their websites easier to crawl [51], and an entire
industry (search engine optimization) has even developed to
help commercial websites improve their footprint in search
engine indexes.

3.2 Reconstruction Measurements
To quantify the difference between a reconstructed website

and a lost website, we use the graphs produced by the web-
sites to classify the recovered resources as first introduced
in [34]. A website can be represented as a graph G = (V, E)
where each resource ri (HTML, PDF, image, etc.), iden-
tified by a URI, is a node vi, and there exists a directed
edge from vi to vj when there is a hyperlink or reference
from ri to rj . This graph may be constructed for any web-
site by downloading the host page (e.g., http://foo.com/)
and looking for links or references to other web resources, a
method employed by most web crawlers.

The left side of Figure 1 shows a web graph representing
some website W if we began to crawl it beginning at A.
Suppose W was lost and reconstructed forming the website
W ′ represented in the center of Figure 1.

For each resource ri in W we may examine its correspond-
ing resource r′i in W ′ that shares the same URI and catego-
rize r′i as

1. identical – r′i is byte-for-byte identical to ri

2. changed – r′i is not identical to ri

3. missing – r′i could not be found in any web repository
and does not exist in W ′

We would categorize those resources in W ′ that did not share
a URI with any resource in W as

4. added – r′i was not a part of the current website but
was recovered due to a reference from r′j

For those resources that are ‘changed’, we can use any
number of metrics to get a feel for how different the two
resources are. In [34] we used shingling [8] to measure the
difference between text-based resources. We do not apply
any change metric in this paper.

Figure 1 shows that resources A, G and E were recovered
and are identical to their lost counterparts. An older version
of B was found (B’) that pointed to G, a resource that does
not currently exist in W . Since B’ does not reference D, we
did not know to recover it. It is possible that G is actually
D renamed, but we do not test for this. An older version of
C was found, and although it still references F, F could not
be found in any web repository.

A measure of change between the original website W and
the reconstructed website W ′ can be described using the
following difference vector:

difference(W, W ′) =

�
Rchanged

|W | ,
Rmissing

|W | ,
Radded

|W ′|

�
(1)

For Figure 1, the difference vector is (2/6, 1/6, 1/5) =
(0.333, 0.167, 0.2). The best case scenario would be (0,0,0),
the complete reconstruction of a website. A completely un-
recoverable website would have a difference vector of (0,1,0).

The difference vector for a reconstructed website can be
illustrated as a reconstruction diagram as shown on the
right side of Figure 1. The changed, identical and missing
resources form the core of the reconstructed website. The
dark gray portion of the core grows as the percentage of
changed resource increases. The hole in the center of the
core grows as the percentage of missing resources increases.
The added resources appear as crust around the core. This
representation will be used later in Table 1 when we report
on the websites we reconstructed in our experiments.

3.3 Web Repository Requests
In order for Warrick to reconstruct a website, it must make

numerous requests for resources from web repositories. The
minimum requirement for a web repository is that it has
the functionality to return a stored resource when given the
complete URL of where the resource exists (or did exist)
on the Web. The resource returned may be the canonical
resource or a modified version of the resource. IA always
returns canonical versions, but search engines usually return
HTML versions of resources (e.g., for PDF, PS, DOC, etc.)
or thumbnail images. Warrick will choose canonical versions
of resources over non-canonical versions, and if all competing
versions are canonical, it will choose the most recent version.
It is important that a website be reconstructed soon after it
disappears since the search engines are often quick to purge
cached resources that are no longer accessible on the Web.

Warrick ‘respects’ web repositories by issuing a limited
number of requests per IP address in a 24 hour period. War-
rick uses the APIs provided by all three search engines which
each allow a limited number of daily queries (IA does not
have an API). Warrick makes a maximum of 1000, 1000,
10,000 and 5000 daily requests from a single IP address to
IA, Google, MSN and Yahoo, respectively. Reconstruction
halts for 24 hours once any of the daily requests are ex-
hausted. The limited number of daily requests causes the
largest bottleneck to website reconstruction; the response

times from the individual web repositories is inconsequen-
tial.

The first version of Warrick used the public web interface
for issuing requests, but we are now using the search en-
gine APIs because they are unlikely to change (or will likely
change at a slower rate) than the HTML-formatted search
results produced by the public web interface. In the case
of Google we had no choice: they have recently begun to
deny requests from an IP address for hours at a time if they
suspect automated requests are being made through their
public interface [33].

Web repositories have different access mechanisms to ex-
tract their resources. Google may be queried for a cached re-
source using cache:http://foo.org/ or directly through an
API function. Yahoo and MSN may be queried using url:

http://foo.org/, and the cached URL can be extracted
from the returned page. Yahoo and MSN also provide the
cached URL directly through an API function call. IA can
be queried using a URL of the form http://web.archive.

org/web/*/http://foo.org/, and the returned page can be
scraped for links to stored versions.

Google and Yahoo have different access mechanisms for
extracting images. Google does not support image search-
ing through their API, but Yahoo does. Google Images can
be searched with a URL like so: foo.org/img.gif. The re-
turned page can be scraped for a link pointing to the thumb-
nail image. Yahoo does not support direct URL queries, but
it can be queried using site:foo.org with the image name
(minus the file extension), and the results can be matched
against the foo.org/img.gif to see if it is found. MSN
does not support image searching, and MSN Images cannot
be reliably queried to produce a missing image. IA has the
same interface for extracting all resources.

3.4 Lister Queries
Warrick reconstructs websites by starting at a seed URL.

It fetches the resource (identified by its URL) from each web
repository, stores the canonical or most recent version of the
resource and then examines the resource (if HTML) for links
to additional resources. New links are added to the crawl
frontier (a queue), and reconstruction continues until the
frontier is empty. Warrick recovers resources in breadth-first
order, the order in which it encounters links; breadth-first
crawling of the Web results in finding high-quality pages
early in the crawl [38]. A more detailed discussion of the
algorithm can be found in [34].

The first version of Warrick did not know in advance if a
repository contained a resource or not. It would first issue
a request to see if the resource was stored, and if it was
stored then another request would be issued to retrieve the
resource. We could say that Warrick was näıve in that it
made requests for resources assuming the repository had at
least some portion of them stored. If a repository did not
have any relevant resources stored, Warrick näıvely made
numerous wasted requests to the repository anyway. For
example, if a website to be reconstructed had 1000 resources,
Warrick might make 1000 requests to a single repository
that did not have any of the website’s resources. This is
problematic considering the limited number of repository
requests that can be made per 24 hours and the fact that
reconstruction is a race against the clock to extract cached
search engine resources before they are removed. If Warrick
could know in advance that a repository did not have any

A W’ A W
B C B C

D E F

G

H I

D

F

E

G

H I

Figure 2: Website W (left) and reconstructed web-
site W’ (right) that is missing resource F.

resources stored, it could avoid making numerous wasted
requests. Additionally, if it knew the resources that a web
repository did have stored in advance, it could make requests
only for stored items.

Fortunately, all four web repositories allow queries which
list all the URLs that are stored for a particular website.
For clarity, we will call these lister queries.

All three search engines support lister queries by using
the ‘site:’ parameter. Further granularity for subsites can
be obtained by using the ‘allinurl:’ parameter for Google
and ‘inurl:’ for MSN and Yahoo. For example, the query
‘site:foo.org inurl:bar’ will list all the cached web pages
in MSN for foo.org/∼bar/* (although some cached resources
like foo.org/∼barabc may also appear in the listing). IA
also supports lister queries using specially-formatted URLs
like this: http://web.archive.org/web/*sr 0nr 20/http:

//foo.org/∼bar/.
There are two primary advantages of using lister queries:

1. discovery of URLs that would not be found by just
examining links in recovered pages, and

2. avoiding unnecessary queries to a web repository that
is known not to have a particular resource.

The first advantage is especially useful when a page that
links to many more pages cannot be recovered. For example,
if the website W in Figure 2 were to be reconstructed with-
out lister queries, and resource F could not be recovered, it
would not be possible to recover G, H and I since no link
would exist to those resources from any recovered resources.
But if a lister query revealed resources G, H and I, we would
be able to recover them as shown on the right of Figure 2,
even though they are not directly connected to W’.

The second advantage, saved queries, will allow us to re-
construct websites at a faster pace. This is beneficial when
we need to recover resources from a search engine cache that
may soon be purged.

Lister queries may produce links to web pages that are
no longer part of the website. For example, occasionally a
webmaster may remove a link to an old resource without
also removing the old resource from the web server. If the
resource has been indexed by a search engine, it will likely
keep the resource indexed until it is removed from the server
(much to the chagrin of unsuspecting college professors who
merely remove links to old exam keys on their web site but
leave the document on their web server). IA will keep the re-
source indefinitely, even if it is removed from the web server.
Although the resources may no longer be part of the latest

Figure 3: Yahoo ‘site:otago.settlers.museum’ search
results.

version of the website, they could prove useful in rebuilding
missing resources.

3.5 URL Canonicalization
Using direct URL queries presents a number of difficulties

to a web-repository crawler because each of the web reposi-
tories may perform URL canonicalization (or URL normal-
ization [7, 28, 42]) in different ways. Lister queries are useful
for resolving some of the problems created by repositories
using different canonicalization policies.

3.5.1 ‘www’ Prefix
Some websites provide two URL variations to access their

websites, one with a ‘www’ prefix and one without. For
example, the website otago.settlers.museum may be ac-
cessed as http://otago.settlers.museum/ or http://www.
otago.settlers.museum/. Many websites will redirect users
and web crawlers from one version to the other using an
http 301 (Moved Permanently) status code. Google and
other search engines request this behavior to simplify web
crawling [15]. Google, MSN and IA may be queried with
either version of the URL successfully, but Yahoo will fail
to recognize a request for http://foo.org/ if they crawled
http://www.foo.org/.

Lister queries will reveal if a web repository stores a re-
source using the ‘www’ prefix or not as the Yahoo query for
site:otago.settlers.museum illustrates in Figure 3. Here
we see Yahoo using www.otago.settlers.museum for results
1-3 and otago.settlers.museum for result 4. A web-repository
crawler may normalize all the URLs under one common host.

3.5.2 Case Insensitivity
Web servers housed on a case-insensitive filesystem like

Windows will allow URLs to be accessed case-insensitively.
Therefore the URLs http://foo.org/bar.html and http:

//www.foo.org/BAR.html are accessing the same resource
on a case-insensitive web server. Google, Yahoo and IA
index all URLs they crawl by the case of the URL and do
not take into account the underlying filesystem. Therefore if

they are asked if they have the URL http://www.foo.org/

BAR.html stored, they will reply ‘no’ when they actually
have the URL indexed as http://foo.org/bar.html. MSN
does not care about case sensitivity of URLs when queried.

Lister queries reveal the case of the URLs a repository
has stored. If a web-repository crawler knows in advance
that a website was housed on a case-insensitive web server,
it can convert all URLs found by lister queries and by page
scraping into lowercase so case is no longer an issue.

3.5.3 Missing the Terminating Slash
When scraping a page for URLs to recover, some URLs

that point to a directory may lack the proper terminating
slash. For example, a URL that points to directory abc

should end with a slash like so: http://foo.org/abc/, but
the URL may appear instead as http://foo.org/abc. This
does not present a problem when accessing the document
live on the Web since the web server will respond with a 301
(Moved Permanently), and the browser will transparently
redirect the user to the correct URL. When reconstructing
a missing website, the resource is not accessible on the Web,
and there is no way to automatically know in advance if
the URL refers to a directory or not. And although Google,
MSN and IA all properly report URLs that end with a slash,
Yahoo does not.

Lister queries are useful for reducing the missing slash
problem. If a web repository like Google reports that it has
a URL stored as http://foo.org/bar/ and Yahoo reports
the URL stored as http://foo.org/bar, we may infer that
the URL is pointing to a directory since we know Google’s
canonicalization policy dictates proper terminal slashes for
directories. But if Yahoo is the only repository storing the
resource http://foo.org/bar, we must arbitrarily decide to
either treat the URL as a directory or not.

3.5.4 Root Level URL Ambiguity
When a web server receives a request for a URL point-

ing to the root level of a directory, it will respond with
any number of resources depending on its configuration.
For example, http://foo.org/bar/ may be accessing in-
dex.html, default.htm, index.cgi or any number of resources.
When recovering a URL pointing to the root level of a di-
rectory, we cannot automatically discover the name of the
file the URL is pointing to. When we recover a link pointing
to http://foo.org/bar/index.html directly, we may infer
that http://foo.org/bar/ is referring to index.html, but
we cannot be certain.

Web repositories canonicalize root level URLs differently
as well. If Google and Yahoo are queried with index.html
appended to a root level URL, they will reply with a ‘found’
response when such a URL does not really exist. MSN takes
a different approach; if http://foo.org/bar/index.html is
crawled and they do not encounter the URL http://foo.

org/bar/ in their crawl, a request for the later URL will
result in a ‘not found’ response.

Lister queries can reduce this problem. If MSN reports
that it has a URL stored as http://foo.org/bar/index.

html, we may assume that this URL refers to http://foo.

org/bar/ (although this is not always true).

3.6 Crawling Policies
The ability to perform lister queries allows us to recon-

struct websites using one of three crawling policies:

1. Näıve Policy - Do not issue lister queries and only
recover links that are found in recovered pages.

2. Knowledgeable Policy - Issue lister queries but only
recover links that are found in recovered pages.

3. Exhaustive Policy - Issue lister queries and recover
all resources found in all repositories.

The näıve policy was used exclusively by the first ver-
sion of Warrick. The knowledgeable and exhaustive policies
have since been implemented. The crawling policy may be
specified before a reconstruction begins.

4. CRAWLING POLICIES EXPERIMENT

4.1 Experiment Methodology
To better understand how the näıve, knowledgeable and

exhaustive crawling policies affect our website reconstruc-
tions, we downloaded the 24 websites from our previous pa-
per on website reconstruction [34]. The downloads served
as baseline comparisons with our reconstructions. Although
some of the websites are actually subsites, we will refer to
them as websites for simplicity. We manually selected the
24 sites because they varied in size, subject, MIME types
and top-level domains, and they did not use robots.txt files
to keep search engines from crawling their pages.

We began the crawl of each site at the base URL shown in
Table 1 and downloaded all images, style sheets, JavaScripts,
etc. that a web crawler could find by following links. We
did not limit the path depth of the crawls. For simplicity,
we restricted the download to port 80 and to only resources
that were in and beneath the starting directory. We did not
follow links to other hosts within the same domain name.
So if the base URL for the website was http://www.foo.

edu/abc/, only URLs matching http://www.foo.edu/abc/*

were downloaded. This is consistent with the default set-
tings used by Warrick for reconstructing websites.

After downloading each website, we immediately started
three concurrent reconstructions using each of the crawling
policies. We began our downloads and reconstructions in
late February 2006 and used six servers running Solaris, each
with their own IP address.

4.2 Reconstruction Results
The downloads and reconstructions took 14 days to com-

plete. Much of the delay was due to running out of daily
requests to IA and Google, the two web repositories with
the lowest quota of daily requests.

The complete results are shown in Table 1 ordered by
total URIs (number of resources downloaded). The makeup
of each downloaded website (percentage of HTML, images
and other MIME types) are listed in the 3rd, 4th and 5th
columns. The difference vector and reconstruction diagram
are given for each reconstruction using the three crawling
policies.

Website number 1 (www.techlocker.com) went out of busi-
ness several months before we reconstructed it. The root
page no longer had links to other portions of the website,
so downloading the website resulted in only 1 file. We will
discuss this reconstruction in more detail in Section 5.1.

Table 2 contains the descriptive statistics of several im-
portant factors of the website reconstructions. The percent-
age of recovered resources are for those resources that share

Table 1: Results of Website Reconstructions
Website URIs Html Images Other Näıve Knowledgeable Exhaustive

1. www.techlocker.com 1 100.0% 0.0% 0.0%
(0.000,
0.000,
0.000)

(0.000,
0.000,
0.000)

(0.000,
0.000,
1.000)

2. www.harding.edu/hr 50 30.0% 10.0% 60.0%
(0.720,
0.220,
0.328)

(0.640,
0.280,
0.163)

(0.620,
0.240,
0.591)

3. www.smoky.ccsd.k12.co.us 57 21.1% 50.9% 28.1%
(0.298,
0.509,
0.000)

(0.298,
0.509,
0.000)

(0.316,
0.491,
0.970)

4. www.genesis427.com 65 15.4% 76.9% 7.7%
(0.508,
0.077,
0.016)

(0.523,
0.077,
0.016)

(0.538,
0.062,
0.500)

5. englewood.k12.co.us/schools/
clayton

77 39.0% 57.1% 3.9%
(0.247,
0.286,
0.000)

(0.247,
0.286,
0.000)

(0.247,
0.286,
0.304)

6. www.raitinvestmenttrust.com 79 30.4% 57.0% 12.7%
(0.228,
0.127,
0.014)

(0.278,
0.253,
0.033)

(0.253,
0.127,
0.859)

7. otago.settlers.museum 120 25.0% 70.8% 4.2%
(0.208,
0.525,
0.017)

(0.208,
0.542,
0.286)

(0.208,
0.533,
0.341)

8. www.usamriid.army.mil 121 36.4% 60.3% 3.3%
(0.397,
0.413,
0.220)

(0.364,
0.512,
0.253)

(0.364,
0.471,
0.880)

9. www.mie2005.net 136 6.6% 62.5% 30.9%
(0.699,
0.199,
0.009)

(0.801,
0.096,
0.000)

(0.801,
0.096,
0.335)

10. searcy.dina.org 164 59.1% 38.4% 2.4%
(0.128,
0.049,
0.071)

(0.128,
0.049,
0.077)

(0.134,
0.037,
0.325)

11. www.cookinclub.com 216 31.9% 67.6% 0.5%
(0.565,
0.037,
0.140)

(0.556,
0.037,
0.148)

(0.560,
0.032,
0.790)

12. www.gltron.org 306 6.9% 71.2% 21.9%
(0.284,
0.180,
0.004)

(0.301,
0.183,
0.035)

(0.301,
0.183,
0.260)

13. privacy.getnetwise.org 326 66.0% 14.7% 19.3%
(0.021,
0.479,
0.306)

(0.092,
0.475,
0.296)

(0.261,
0.307,
0.321)

14. www.americancaribbean.com 329 17.6% 80.9% 1.5%
(0.380,
0.450,
0.005)

(0.368,
0.450,
0.005)

(0.368,
0.450,
0.689)

15. www.eskimo.com/˜scs 357 94.4% 5.6% 0.0%
(0.008,
0.006,
0.508)

(0.008,
0.008,
0.509)

(0.014,
0.006,
0.834)

16. www.digitalpreservation.gov 389 85.1% 2.8% 12.1%
(0.015,
0.946,
0.000)

(0.653,
0.321,
0.612)

(0.643,
0.308,
0.898)

17. www.aboutfamouspeople.com 396 58.1% 41.9% 0.0%
(0.705,
0.005,
0.088)

(0.434,
0.005,
0.086)

(0.419,
0.005,
0.844)

18. home.alltel.net/bsprowl 474 34.6% 65.4% 0.0%
(0.004,
0.654,
0.006)

(0.013,
0.808,
0.000)

(0.055,
0.665,
0.006)

19. www.dpconline.org 580 40.7% 34.0% 25.3%
(0.543,
0.209,
0.000)

(0.450,
0.217,
0.032)

(0.452,
0.214,
0.282)

20. www.cs.odu.edu/˜pothen 610 25.2% 42.3% 32.5%
(0.549,
0.067,
0.044)

(0.485,
0.146,
0.048)

(0.480,
0.152,
0.178)

21. www.mypyramid.gov 646 47.8% 39.2% 13.0%
(0.367,
0.327,
0.011)

(0.291,
0.345,
0.002)

(0.291,
0.344,
0.102)

22. www.financeprofessor.com 673 48.9% 44.6% 6.5%
(0.184,
0.165,
0.147)

(0.189,
0.080,
0.069)

(0.215,
0.120,
0.511)

23. www.fishingcairns.com.au 1181 22.4% 77.2% 0.4%
(0.439,
0.025,
0.000)

(0.434,
0.040,
0.000)

(0.411,
0.036,
0.197)

24. www.kruderdorfmeister.com 2503 90.7% 9.3% 0.0%
(0.068,
0.916,
0.000)

(0.068,
0.916,
0.000)

(0.069,
0.914,
0.243)

Table 2: Statistics for Website Reconstructions
Category Pol Mean Median Std Min/Max

Recovered (%)
N 71.4 79.6 27.5 5.4/100.0
K 72.4 76.5 25.3 8.4/100.0
E 74.7 80.2 23.6 8.6/100.0

Added (%)
N 8.1 1.3 13.3 0.0/50.8
K 11.1 3.4 16.7 0.0/61.2
E 51.1 42.1 30.8 0.6/100.0

Total requests
N 1711.7 1131 1580.5 6/4880
K 710.9 368.5 714.1 48/2412
E 1587.5 941.5 1481.1 180/5220

Efficiency ratio
(all resources)

N 0.16 0.15 0.05 0.07/0.27
K 0.41 0.39 0.14 0.21/0.67
E 0.49 0.48 0.10 0.29/0.65

Efficiency ratio
(excluding
added)

N 0.15 0.15 0.06 0.04/0.27
K 0.37 0.35 0.15 0.02/0.64
E 0.22 0.23 0.14 0.00/0.50

the same URI as resources in the downloaded website; this
does not include the number of ‘added’ resources. Although
the exhaustive policy performed moderately better, all three
crawling policies generally recovered the same number of
resources. The näıve policy performed significantly worse
than the other policies only once: when reconstructing site
16 (www.digitalpreservation.gov). This was due to a re-
cent website redesign which had not yet been fully captured
in the search engine caches.

The percentage of resources categorized as ‘added’ for
the exhaustive policy (51.1%) averaged 40% more than the
knowledgeable policy and 43% more than the näıve policy.
As we would expect, the exhaustive policy recovers signifi-
cantly more added resources because every resource stored
in every web repository is recovered regardless if a link is
found to the resource or not.

Table 2 also shows the total number of repository requests
issued for each website reconstruction. The number of re-
quests per reconstruction varied widely, but the knowledge-
able policy (710.9) averaged less than half the number of re-
quests as the exhaustive (1587.5) and näıve policies (1711.7).

A better gauge for comparing these policies is to exam-
ine each website reconstruction’s efficiency ratio, the total
number of recovered resources divided by the total number
of issued repository requests. The most efficient reconstruc-
tion would result in one request per recovered resource, a
1.0 efficiency ratio.

The efficiency ratio for each website reconstruction is plot-
ted in the top graph of Figure 4, and the distribution is plot-
ted at the bottom. It is also useful to examine the efficiency
ratios when added resources are not considered. Figure 5
shows the efficiency ratio (top) and distribution (bottom)
for each crawling policy when added resources are not con-
sidered in the total recovered resources. The efficiency ratio
descriptive statistics are shown at the bottom of Table 2.

We grouped each of the efficiency ratios into pairs and ran
a Wilcoxon Matched-Pairs Signed Ranks test on each of the
pairs. The tests revealed statistically significant differences
(p < 0.001) between the crawling policies when all resources
are included in the efficiency ratio. As we would expect, the
näıve policy is least efficient at recovering resources because
the crawler does not know in advance which resources a web
repository has stored. The exhaustive policy was shown
to be slightly more efficient than the knowledgeable policy,
likely because lister queries produce ‘false positives’ for the

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Website reconstructions

Ef
fic

ie
nc

y
ra

tio

Naïve

Knowledgeable

Exhaustive

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Efficiency ratio bins

Fr
eq

ue
nc

y

Naïve

Knowledgeable

Exhaustive

Figure 4: Top: Efficiency ratio = total number of re-
covered resources divided by total number of repos-
itory requests. Bottom: Distribution of efficiency
ratios where bin 0.1 corresponds to ratios with val-
ues between 0 and 0.1, etc.

knowledgeable policy that are not recovered.
When we consider the efficiency ratio without added re-

sources, we still see strong, statistically significant differ-
ences (p < 0.001) between the crawling policies with the
exception of the (exhaustive, näıve) pair which still main-
tains a low p value (p < 0.05). When we exclude added
resources, the knowledgeable policy performs the best. The
exhaustive policy showed a 45% loss in the mean when com-
pared to the efficiency ratio with all resources included. The
näıve policy showed no appreciable difference.

4.3 Summary of Findings
Our experiments reveal several important characteristics

about the three crawling policies. The näıve policy will re-
cover nearly as many non-added resources as the knowledge-
able and exhaustive policies, but at a huge expense in in-
creased repository requests. This policy should be avoided
if all the web repositories support lister queries.

The exhaustive policy will regularly recover significantly
more added resources than the other two policies with a rel-
atively high efficiency ratio. This may be desirable when re-
constructing a website since the added resources may aid the
human operator in manually re-creating missing resources.
On the other hand, the added resources may contain out-
dated or useless information that is not useful for recon-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Website reconstructions

Ef
fic

ie
nc

y
ra

tio
Naïve

Knowledgeable

Exhaustive

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Efficiency ratio bins

Fr
eq

ue
nc

y

Naïve

Knowledgeable

Exhaustive

Figure 5: Top: Efficiency ratio excluding ‘added’
resources. Bottom: Distribution of efficiency ra-
tios excluding ‘added’ resources where bin 0.1 cor-
responds to ratios with values between 0 and 0.1,
etc.

structing the website, and the extra time spent recovering
added resources may be significant for large websites.

The knowledgeable policy issues the fewest number of
repository requests per reconstruction (less than half the
number of requests of the other policies) and has the high-
est efficiency ratio when wanting to recover only non-added
resources. Because fewer requests are issued with the knowl-
edgeable policy, a website can be reconstructed much more
quickly than if the other policies are used.

5. RECONSTRUCTING LOST WEBSITES
The experiments we have performed previously involved

websites that had not yet been lost (with the exception of
the TechLocker website). In this section we discuss various
issues we have encountered while reconstructing three real
websites that have been lost and discuss their implications
for future work.

5.1 TechLocker Website
We were not aware that www.techlocker.com had disap-

peared until months afterwards when we ran our experi-
ments. Using the näıve and knowledgeable policies, we were
only able to recover a single HTML resource. The exhaustive
policy recovered 2244 resources with 1952 of the resources
coming from IA and 292 coming from Google. MSN and Ya-

hoo had nothing cached. The Google resources were com-
posed of 161 images and 131 HTML resources. Although
we are not able to determine the cached date of images in
Google, we were able to discover the HTML resources ranged
from January to September 2005.

We used the original URLs of the recovered resources to
see if they still resided on the TechLocker web server. Each
request consistently resulted in a http 404 (not found) re-
sponse. It may be surprising to some that resources over one
year in age remain in the Google cache, but as our previous
experiments have demonstrated [34], Google may make re-
sources available in their cache long after the resources have
been removed from a website. We have not observed this
behavior from MSN or Yahoo.

5.2 WWW 2006 Conference Website
The 15th International World Wide Web 2006 Confer-

ence website (www2006.org) was lost after a fire destroyed
the Mountbatten building at the University of Southampton
(UK) in October 2005 [21]. The fire was approximately one
week before long papers were to be submitted. We ran War-
rick with the näıve policy (lister queries had not yet been
implemented) and were able to recover 77 resources, 36 from
Google, 3 from Yahoo and 38 from MSN. After contacting
the conference organizers, we learned that they had used a
script to recover some pages from Google’s cache, but they
had not thought to look for pages in MSN or Yahoo. Leslie
Carr, one of the conference chairs, stated in an email corre-
spondence: “Our problem was not with data recovery but
with service sustainability. We knew that we would be able
to reconstruct the data (at some point); the challenge was
reconstructing enough data now.” The web server was later
recovered intact, and the website was restored a week later.

Several of the pages we recovered were produced dynam-
ically by PHP. Web repositories are currently only storing
the client’s view of web pages, not the server-side logic used
to generate the client view. In Section 6 we address how we
might inject the server-side logic (scripts, data files, data-
bases, etc.) into web pages that are stored by web reposito-
ries so the server-side files of a websites can also be recon-
structed.

5.3 Internet Christian Library Website
In March 2006, we were approached by an individual who

wanted to reconstruct a non-profit academic archival website
(www.iclnet.org) which had been lost a month earlier when
the private ISP which had been hosting the site ended their
support. The website had been removed by the new ISP,
and the same “domain renewal” page was returned whenever
any of the website’s original URLs were accessed. These soft
404 responses [5] caused the search engines to replace their
cached pages with the domain-renewal pages as illustrated
in Figure 6.

Although MSN’s cache contained many soft 404 pages,
it appeared that Google and Yahoo had only replaced the
cache of the root page, http://www.iclnet.org/, with the
soft 404 page; the remainder of the original pages remained
cached. It is possible that the Google and Yahoo crawlers
can detect soft 404 pages and will not cache more than one
of them. Or they were just slow at re-crawling these pages.
IA was the only web repository that did not have the soft
404 pages stored (it takes 6-12 months for their repository
to be updated with the most recent Alexa crawls [26]).

Figure 6: MSN ‘site:www.iclnet.org’ search results
contain “domain renewal” soft 404 pages.

The algorithm used by Warrick to reconstruct websites
looks for the most recent HTML page to save. When we re-
constructed the ICL website using the knowledgeable crawl-
ing policy, Warrick chose the domain-renewal pages from
MSN because they were the most recent. Because there
were no links to follow to other resources, none of the orig-
inal pages were restored with this policy. We then ran two
reconstructions using the exhaustive policy: one using IA
only and one using the three search engines. By separat-
ing IA pages from the search engine pages, we ensured that
at least one reconstruction would be free of domain-renewal
pages.

The IA-only reconstruction yielded 3744 recovered resources
for the ICL website with 966 missing resources. The search-
engine-only reconstruction yielded 1337 resources, mostly
from Google; 5363 resources could not be recovered.

In the next version of Warrick we would like to incor-
porate automatic detection of soft 404s, possibly using the
algorithm proposed in [5]. We would also like to give users
the option to choose which of the resource versions for a
single URL they would like to save.

6. FUTURE WORK
As mentioned in Section 5.2, we are interested in devel-

oping methods for injecting the server-side functionality of
a website into the WI so it can be reconstructed. Not only
do we want to recover the hypertext, we want to recover
the generative functionality of the hypertext. We are inves-
tigating how we might use erasure codes [44] for encoding
server-side components (programs, databases, etc.) and in-
jecting them into HTML comments in indexable web pages.
Erasure codes are frequently used in RAID systems where

Figure 7: IA versions of www.dl00.org web page.

portions of files are distributed among multiple devices to
prevent data loss [43]. If we were able to recover some sub-
set of encoded pages from the WI, we could reconstruct the
server files.

Another area for future work involves reconstructing a
website when repository copies of a website are tainted. An
interesting example is shown in Figure 7. The web page for
the 2000 ACM Digital Library Conference (www.dl00.org)
no longer points to the conference materials. The URL is
still valid, but the website has been lost. The conference
did not renew the domain registration, and in late 2001 the
domain was “hijacked”. In order to reconstruct this web-
site, we would need to distinguish between the correct and
tainted versions of a page. We are interested in applying
trend analysis to detect significant shifts in the page “about-
ness”, similar to the techniques applied in the Walden’s Path
Project [16]. The Museum of E-Failure [4] is an excellent
source of lost websites for testing purposes.

Reconstructing websites can be problematic for a highly
dynamic environment where navigating or crawling the site
changes the link structure (e.g., [31]). For these types of
websites, links are always changing to exhibit navigational
patterns, and the link URLs do not constitute as unique
identifers for resources. Recovered resources with dynamic
links will never be byte-for-byte identical to any original
resources. We need to develop methods for more accurately
assessing success when reconstructing such websites.

Finally, we are wanting to run a large-scale experiment re-
constructing a larger sample of randomly chosen websites in
order to discover those website properties that assist in WI
preservation. In our previous study [34] we did not find a
statistical correlation between website size, Google’s PageR-
ank and reconstruction success. We would like to develop
guidelines that webmasters can use to ensure their websites
are more successfully reconstructed from the WI.

7. CONCLUSIONS
We have discussed several of the challenges of using direct

URL queries with web repositories. We have shown how
lister queries can be used to negate some of the repository
URL canonicalization problems.

We have presented three crawling policies for our web-
repository crawler and evaluated the policies by download-

ing and reconstructing 24 websites. We found that the näıve
policy was nearly as effective at recovering non-added re-
sources as the knowledgeable and exhaustive policies but
at a huge expense in increased repository requests. The ex-
haustive policy recovered significantly more added resources
than the other two policies with a relatively high efficiency
ratio. The knowledgeable policy was shown to be the most
efficient when recovering only non-added resources, and it
caused the crawler to issue the fewest number of repository
requests per reconstruction.

We also shared our experiences reconstructing lost web-
sites on behalf of others and examined some of the weak-
nesses of our current crawler. We are planning on expanding
our work in website reconstruction from the WI to further
evaluate its effectiveness as a preservation strategy. We hope
our work will provide a useful public service for those who
lose their websites when no backups are available.

8. ACKNOWLEDGEMENTS
We thank our anonymous reviewers for their valuable sug-

gestions that were used to improve our paper.

9. REFERENCES
[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and

S. Raghavan. Searching the Web. ACM Transactions
on Internet Technology (TOIT), 1(1):2–43, 2001.

[2] R. Baeza-Yates and C. Castillo. Characterization of
national web domains. Technical report, Universitat
Pompeu Fabra, 2005.

[3] R. Baeza-Yates, C. Castillo, M. Marin, and
A. Rodriguez. Crawling a country: better strategies
than breadth-first for web page ordering. In
Proceedings of WWW ’05, pages 864–872, 2005.

[4] S. Baldwin. Museum of e-failure, 2006.
http://disobey.com/ghostsites/mef.shtml.

[5] Z. Bar-Yossef, A. Z. Broder, R. Kumar, and
A. Tomkins. Sic transit gloria telae: towards an
understanding of the web’s decay. In Proceedings of
WWW ’04, pages 328–337, 2004.

[6] M. K. Bergman. The deep web: Surfacing hidden
value. The Journal of Electronic Publishing, August
2001. http:
//www.press.umich.edu/jep/07-01/bergman.html.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): Generic syntax. RFC 3986,
Jan. 2005.

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the Web. Computer
Networks and ISDN Systems, 29(8-13):1157–1166,
1997.

[9] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
resource discovery. In Proceedings of WWW ’04, 1999.

[10] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proceedings of VLDB ’00, pages 200–209, 2000.

[11] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of
SIGMOD ’00, pages 117–128, 2000.

[12] J. Cho and H. Garcia-Molina. Parallel crawlers. In
Proceedings of WWW ’02, pages 124–135, 2002.

[13] J. Cho, N. Shivakumar, and H. Garcia-Molina.
Finding replicated web collections. In Proceedings of
SIGMOD ’00, pages 355–366, 2000.

[14] V. Cothey. Web-crawling reliability. Journal of the
American Society for Information Science and
Technology, 55(14):1228–1238, 2004.

[15] M. Cutts. SEO advice: URL canonicalization. Jan
2006. http://www.mattcutts.com/blog/
seo-advice-url-canonicalization/.

[16] Z. Dalal, S. Dash, P. Dave, L. Francisco-Revilla,
R. Furuta, U. Karadkar, and F. Shipman. Managing
distributed collections: evaluating web page changes,
movement, and replacement. In Proceedings of JCDL
’04, pages 160–168, 2004.

[17] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and
M. Gori. Focused crawling using context graphs. In
Proceedings of VLDB ’00, pages 527–534, 2000.

[18] J. Edwards, K. McCurley, and J. Tomlin. An adaptive
model for optimizing performance of an incremental
web crawler. In Proceedings of WWW ’01, pages
106–113, 2001.

[19] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: using statistical analysis to
locate spam web pages. In Proceedings of WebDB ’04,
pages 1–6, 2004.

[20] D. Fetterly, M. Manasse, and M. Najork. Detecting
phrase-level duplication on the World Wide Web. In
Proceedings of ACM SIGIR ’05, pages 170–177, 2005.

[21] Fire destroys top research centre. Oct 31, 2005.
http://news.bbc.co.uk/2/hi/uk news/england/

hampshire/4390048.stm.

[22] D. Gomes and M. J. Silva. Characterizing a national
community web. ACM Transactions on Internet
Technology (TOIT), 5(3):508–531, 2005.

[23] Google Sitemap Protocol, 2005. http://www.google.
com/webmasters/sitemaps/docs/en/protocol.html.

[24] Y. Hafri and C. Djeraba. High performance crawling
system. In Proceedings of MIR ’04, pages 299–306,
2004.

[25] T. L. Harrison and M. L. Nelson. Just-in-time
recovery of missing web pages. In Proceedings of
HYPERTEXT ’06, Aug 2006.

[26] Internet Archive FAQ: How can I get my site included
in the Archive?, 2006.
http://www.archive.org/about/faqs.php.

[27] C. Lampos, M. Eirinaki, D. Jevtuchova, and
M. Vazirgiannis. Archiving the Greek Web. In
Proceedings of the 4th International Web Archiving
Workshop (IWAW’04), Sept 2004.

[28] S. H. Lee, S. J. Kim, and S. H. Hong. On URL
normalization. In ICCSA ’05: Proceedings of the
International Conference on Computational Science
and Its Applications, pages 1076–1085, June 2005.

[29] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H.
Yau. Extracting data behind web forms. In Workshop
on Conceptual Modeling Approaches for e-Business,
pages 402–413, Tampere, Finland, Oct 2002.

[30] S. W. Liddle, S. H. Yau, and D. W. Embley. On the
automatic extraction of data from the hidden web. In
International Workshop on Data Semantics in Web
Information Systems (DASWIS-2001), pages 212–226,

Yokohama, Japan, Nov 2001.

[31] T. Lutkenhouse, M. L. Nelson, and J. Bollen.
Distributed, real-time computation of community
preferences. In Proceedings of HYPERTEXT ’05,
pages 88–97, 2005.

[32] C. C. Marshall and G. Golovchinsky. Saving private
hypertext: requirements and pragmatic dimensions for
preservation. In Proceedings of HYPERTEXT ’04,
pages 130–138, 2004.

[33] F. McCown. Google is sorry. Jan 2006.
http://frankmccown.blogspot.com/2006/01/

google-is-sorry.html.

[34] F. McCown, J. A. Smith, M. L. Nelson, and J. Bollen.
Reconstructing websites for the lazy webmaster.
Technical report, Old Dominion University, 2005.
http://arxiv.org/abs/cs.IR/0512069.

[35] F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz.
Evaluating topic-driven web crawlers. In Proceedings
of SIGIR ’01, pages 241–249, 2001.

[36] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic.
Introduction to Heritrix, an archival quality web
crawler. In Proceedings of the 4th International Web
Archiving Workshop (IWAW’04), Sept 2004.

[37] S. Mukherjea. Organizing topic-specific web
information. In Proceedings of HYPERTEXT ’00,
pages 133–141, 2000.

[38] M. Najork and J. L. Wiener. Breadth-first crawling
yields high-quality pages. In Proceedings of WWW
’01, pages 114–118, 2001.

[39] M. L. Nelson, H. Van de Sompel, X. Liu, T. L.
Harrison, and N. McFarland. mod oai: An Apache
module for metadata harvesting. In Proceedings of
ECDL 2005, 2005.

[40] A. Ntoulas, P. Zerfos, and J. Cho. Downloading
textual hidden web content through keyword queries.
In Proceedings of JCDL ’05, pages 100–109, 2005.

[41] E. T. O’Neill, B. F. Lavorie, and R. Bennett. Trends
in the evolution of the public web. D-Lib Magazine,
3(4), April 2003.

[42] G. Pant, P. Srinivasan, and F. Menczer. “Crawling the
Web”. In Web Dynamics: Adapting to Change in
Content, Size, Topology and Use. Edited by M. Levene
and A. Poulovassilis, pages 153–178. Springer-Verlag,
2004.

[43] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software:
Practice and Experience, 27(9):995–1012, 1997.

[44] M. O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal
of the ACM, 36(2):335–348, 1989.

[45] S. Raghavan and H. Garcia-Molina. Crawling the
hidden web. In Proceedings of VLDB ’01, pages
129–138, 2001.

[46] M. A. Serrano, A. Maguitman, M. Boguna,
S. Fortunato, and A. Vespignani. Decoding the
structure of the WWW: facts versus sampling biases.
Technical report, 2006.
http://www.arxiv.org/abs/cs.NI/0511035.

[47] V. Shkapenyuk and T. Suel. Design and
implementation of a high-performance distributed web
crawler. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE), volume 60,
pages 357–368. IEEE Computer Society, 2002.

[48] K. Sigurosson. Incremental crawling with Heritrix. In
Proceedings of the 5th International Web Archiving
Workshop (IWAW’05), Sept 2005.

[49] J. A. Smith, F. McCown, and M. L. Nelson. Observed
web robot behavior on decaying web subsites. D-Lib
Magazine, 12(2), Feb 2006.

[50] D. Waters and J. Garrett. Preserving digital
information: Report of the task force on archiving of
digital information. Technical report, 1996.
http://www.rlg.org/ArchTF/.

[51] What are Google’s design and technical guidelines?
http://www.google.com/support/webmasters/bin/

answer.py?answer=35770.

[52] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman,
and L. Ozsen. Optimal crawling strategies for web
search engines. In Proceedings of WWW ’02, pages
136–147, 2002.

