
Project 2: Search Engine
COMP 475 – Web Science

50 points

You are to create two Python scripts: an indexer (indexer.py) and a search engine (search.py). The indexer.py should do
the following:

1. After performing a crawl (using your web crawler Python script), read all the HTML files that were stored in the

“pages” directory. For each document, use Beautiful Soup to extract the title and the text from the body of the page
(read the Beautiful Soup documentation to find out how). Make sure you ignore the URL and HTTP headers at the
top of each document and the contents of <script> and <style> tags (see StackOverflow for removing <script> and
<style> from a page using Beautiful Soup). Beautiful Soup may break on some pages and include HTML as text, but
we will not worry about these exceptions or bugs.

2. All text should be converted to lowercase, and non-alphanumeric characters should be ignored. So “123-456” would
become “123” and “456”, and “joe@yahoo.com” would become “joe”, “yahoo”, “com”. Ignore the following stop
words: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with. Do not
perform stemming.

3. A single inverted index should be created for the document corpus, which maintains the document ID (numbered

1…n in order of the pages found in the “pages” directory), a 1 or 0 if the text is found in the title, and the term
frequency from the body (normalized by the total number of tokens in the document after removing stop words).

4. After indexer.py has finished indexing all the web pages, it should output the inverted index to index.dat. Example:

arkansas
 6 0 0.022
model
 1 0 0.309
 3 0 0.015
 5 1 0.001
tuesday
 2 0 0.082
white
 2 1 0.018
etc…

Note: The indexed words are alphabetized, and there are 3 spaces before sets of three numbers (each separated by a
single space) which are: doc ID, title (0 or 1), and normalized body TF (rounded to 3 decimal places). For example, the
term white was found only in document 2; it was somewhere in the title and made up 1.8% of all the words in the
document.

5. It may take some time for your program to run, so you should output information about the program’s status as it
indexes the crawled pages. Outputting what file is being worked on would be helpful to the user who is waiting for
the program to finish its work.

After the index is written to index.dat, the search.py script will allow the user to search the corpus for specific words.
Here is how search.py should operate:

1. First, read the search phrase at the command line. Examples:

$ search.py bisons
$ search.py "harding university"

If no command line argument is supplied, the program should tell the user a search term is required and terminate.
Ignore any command-line arguments after the first.

2. Next, the program should read the index from index.dat into memory. Note that you may want to use similar data
structures used in indexer.py, so you should write your programs in a way where you share code without having
redundant code in each script. (Use the InvertedIndex.py, and feel free to use any new .py files in your project.)

3. For simplicity, all queries will be assumed to use boolean ANDs, and we will not implement phrase search. For
example, the query harding university is should generate a boolean search for harding AND university, so only
documents containing both terms should be considered a match.

4. Remove any stop words from the query as was done when indexing the documents.

5. After determining which documents match the search terms, calculate the relevancy score for each document:

relevancy score = 0.9 * body TF + 0.1 * title score

Do this for each term, and compute the average relevancy score for all terms. So if the search was for harding
university, you would compute the score for harding and the score for university and compute the average to
determine the overall relevancy score.

6. The total number of results should first be displayed. Then display every document ID and score (out to 3 decimal
places) ordered by score, and number the results. Example:

Results: 4
1. docID 3, score 0.830
2. docID 1, score 0.814
3. docID 5, score 0.350
4. docID 8, score 0.108

Bonus: You can receive 5 bonus points for implementing phrase search. So when the user searches for “harding
university”, assume they want only documents with that exact phrase. To accomplish this, you will need to store the
positions of the terms that are stored in the inverted index. Then use those positions to ensure the phrase matches
successive positions.

Zip up your Python scripts, and submit your zip file to Canvas before it is due. Make sure your output matches the
specifications precisely to avoid losing any points. If you use any code you find in the web, you must document the source
in your program.

Helper Classes

InvertedIndex.py

class InvertedIndex:
 def __init__(self):
 self.list = {} # Empty dict

 def add(self, word, docId, title, tf):
 if word not in self.list:
 self.list[word] = {} # Empty dict entry

 self.list[word][docId] = Entry(title, tf)

 def writeToFile(self, filename):
 # TODO: Write str(self) to filename

 def readFromFile(self, filename):
 # TODO: Read contents of filename to build index

 def __str__(self):
 # TODO: Return a string representation built from list

class Entry:
 def __init__(self, title = 0, tf = 0):
 self.title = title
 self.tf = tf

 def __str__(self):
 return "[title: {0}, tf: {1:.3f}]".format(self.title, self.tf)

Test Data

a.html

http://foo.org/a.html
Date: Wed, 28 Aug 2019 17:04:40 GMT

<title>cool!!! test!!!</title>
<body>
this 123-456.
</body>

b.html

http://foo.org/b.html
Date: Wed, 28 Aug 2019 17:04:40 GMT

<html>
<head>
<title>Go Cowboys!</title>
</head>
<body>
And another test and test!
</body>
</html>

c.html

http://foo.org/c.html
Date: Wed, 28 Aug 2019 17:04:40 GMT

<body>
This is a test.
</body>

Inverted index (a.html is 1, b.html is 2, c.html is 3):
123
 1 0 0.200
456

 1 0 0.200
another
 2 0 0.200
cool
 1 1 0.200
cowboys
 2 1 0.200
go
 2 1 0.200
test
 1 1 0.200
 2 0 0.400
 3 0 0.500
this
 1 0 0.200
 3 0 0.500

Search for "test this" results in the following:
Results: 2
1. docID 3, score 0.450
2. docID 1, score 0.230

Search for "test cowboys go" results in the following:
Results: 1
1. docID 2, score 0.307

Search for "cool cowboys" results in the following:
Results: 0

	Helper Classes
	Test Data

